\qquad Caleb McWhorter - Solutions

Formulae: If X is a discrete random variable taking on values $x_{1}, x_{2}, \ldots, x_{k}$ with respective probabilities $p_{1}, p_{2}, \ldots, p_{k}$, then the mean is given by $\mu_{X}=\sum_{i=1}^{k} x_{i} p_{i}$, the variance by $\sigma_{X}^{2}=\sum_{i=1}^{k}\left(x_{i}-\mu_{X}\right)^{2} p_{i}$, and $\sigma_{X}=\sqrt{\sigma_{X}^{2}}$.

The number of contracts X received by a consultant during a randomly selected month is given by the probability distribution below:

Number of Contracts	0	1	2	3	4
Probability		0.20	0.30	0.20	0.15

1. (2 points) Find the probability that X is at most 3 .

$$
P(\text { at most } 3)=P(0)+P(1)+P(2)+P(3)=1-P(4)=1-0.15=0.85
$$

2. (3 points) Find μ_{X}, the mean of the probability distribution of X.

$$
\mu_{X}=\sum x P(x)=0(0.15)+1(0.20)+2(0.30)+3(0.20)+4(0.15)=2.0
$$

3. (5 points) Find σ_{X}, the standard deviation of the probability distribution of X.

x	$x-\mu$	$(x-\mu)^{2}$	$(x-\mu)^{2} P(x)$
0	-2	4	0.6
1	-1	1	0.2
2	0	0	0
3	1	1	0.2
4	2	4	0.6
			Total: 1.6

Therefore, $\sigma_{X}^{2}=1.6$ so that $\sigma_{X}=\sqrt{1.6}=1.26491$.

