\qquad Caleb McWhorter - Solutions

MAT 221: Section 1

Note: You must show the details of the work to receive credit. Simply providing the final answer [from a calculator] will get ZERO points.

Formulae: Sample count X out of a simple random sample (SRS) of size n, where the population proportion is p, has a Binomial distribution with parameters n and p.
i.) If $n p \geq 10$ and $n(1-p) \geq 10$, then X is approximately normal, $N(\mu=n p, \sigma=\sqrt{n p(1-p)})$.
ii.) If $n p \geq 10$ and $n(1-p) \geq 10$ then $\hat{p}=\frac{x}{n}$ is approximately normal, $N\left(\mu=p, \sigma=\sqrt{\frac{p(1-p)}{n}}\right)$.

1. According to the Gallup-Healthways Well-Being Index ${ }^{1}$, " 9% of Americans are 'stressed' ."
(a) (2 points) If a simple random sample of 4 Americans is taken, what is the probability that 2 or more of them in the sample are "stressed"?

$$
P(2)+P(3)+P(4)=0.0402+0.0027+0.0001=0.043
$$

(b) (4 points) If a simple random sample of 200 Americans is taken, what is the probability that at least 23 of them in the sample are "stressed" ? [Use the Normal Approximation.]

Using the Normal approximation ($n p=18$ and $n(1-p)=182$), the distribution is approximately $N(\mu=n p, \sigma=\sqrt{n p(1-p)})=N(18.0,4.047)$. Then

$$
z_{23}=\frac{23-18}{4.047}=\frac{5}{4.047}=1.235 \rightsquigarrow 0.8916
$$

Therefore, $P(\geq 23)=1-0.8916=0.1084$.
(c) (4 points) If a simple random sample of 240 Americans is taken, what is the probability that at most 13% the sample are "stressed"? [Use the Normal Approximation.]

Using the Normal approximation ($n p=21.6$ and $n(1-p)=218.4$), the distribution is approximately $N\left(\mu=p, \sigma=\sqrt{\frac{p(1-p)}{n}}\right)=N(0.09,0.0185)$. Then

$$
z_{13}=\frac{0.13-0.09}{0.0185}=\frac{0.04}{0.0185}=2.16 \rightsquigarrow 0.9847
$$

[^0]
[^0]: ${ }^{1}$ http://www.gallup.com/poll/106915/Gallup-Daily-US-Mood.aspx

