Name: $\qquad$ MAT 221
Fall 2014
Problem Set 3
Problem 1: Fill in the blank:
(a) The five number summary consists of the
$\qquad$ , $\qquad$ , $\qquad$ , $\qquad$ , and $\qquad$ .
(b) Bar charts are for $\qquad$ categorical variables while box plots and histograms are for $\qquad$ quantitative variables.
(c) You look for outliers by calculating $\qquad$ $1.5 \cdot I Q R$ then looking for numbers less than $\qquad$ or numbers greater than $\qquad$ .
(d) If the mean is less than the median, then the distribution of data is $\qquad$ skewed.
(e) The $z$-score measures how many $\qquad$ standard deviations a data point is from the $\qquad$ mean .
(f) Scatterplots show the relationship between what kind of variables? $\qquad$ quantitative

Problem 2: The scores on a university examination is normally distributed with mean 62 and standard deviation 11.
(a) What proportion of the students scored at least 80 ?

$$
z_{80}=\frac{80-62}{11}=\frac{18}{11}=1.63 \rightsquigarrow 0.9484
$$

Therefore, $P(\geq 80)=1-P(<80)=1-0.9484=0.0516$.
(b) What proportion of the students scored between 70 and 80 ?

$$
\begin{aligned}
z_{80}=\frac{80-62}{11}=\frac{18}{11}=1.63 \rightsquigarrow 0.9484 & \\
& z_{70}=\frac{70-62}{11}=\frac{8}{11}=0.73 \rightsquigarrow 0.7673
\end{aligned}
$$

Therefore, the proportion of students scoring between 70 and 80 is $0.9484-0.7673=0.1811$.
(c) If the top $5 \%$ of students are awarded a merit certificate, what is the lowest mark that a student can have and still be awarded a merit certificate?
top $5 \% \rightsquigarrow$ bottom $95 \% \rightsquigarrow 1.645=z$. Then

$$
1.645=z=\frac{x-62}{11}
$$

Then $18.095=x-62$ so that $x=80.095$. Therefore, a student must score at least 80.095 to be in the top $5 \%$ of students taking the exam.

Problem 3: There were 8 students in a class. The average grade (out of 100) of each student and her/his score on the final exam (out of 100) were recorded. The record is given below:

| Observation \# | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Mean | StDev. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Quiz $(x)$ | 85 | 78 | 99 | 87 | 79 | 71 | 88 | 99 | 85.75 | 9.867 |
| Final exam $(y)$ | 80 | 72 | 98 | 85 | 82 | 65 | 92 | 90 | 83 | 10.784 |

The correlation for a linear regression for this data was $r=0.9049$.
(a) Find the equation of the least square regression line.
$b_{1}=r \frac{s_{y}}{s_{x}}=0.9049 \cdot \frac{10.784}{9.867}=0.99$ and $b_{1}=\bar{y}-b_{1} \bar{x}=83-0.99 \cdot 85.75=-1.89$. Therefore, $y=0.99 x-1.89$.
(b) Use the regression line to predict the final exam score of a student whose average quiz grade is 82 .
$y=0.99(82)-1.89=79.29$
(c) Calculate the residual for observation \#6.
$y=0.99(71)-1.89=68.40$. We have residual $=$ observed - predicted $=65-68.40=-3.40$.
Problem 4: Consider the following numbers:

| 4 | 17 | 18 | 19 | 23 | 25 | 27 | 27 | 29 | 32 | 35 | 40 | 42 | 44 | 46 | 61 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(a) Compute the five number summary for the data above.

| Min | $Q_{1}$ | Median | $Q_{3}$ | Max |
| :---: | :---: | :---: | :---: | :---: |
| 4 | 21 | 28 | 41 | 61 |

(b) Are there any outliers? Justify your answer.
$1.5 \cdot I Q R=1.5 \cdot(41-21)=1.5 \cdot 20=30$. Then $Q_{1}-1.5 \cdot I Q R=21-30=-9$ and $Q_{3}+1.5 \cdot I Q R=41+30=71$. Therefore, there are no outliers.
(c) Sketch a box plot for the above data set.

(d) Compute the mean and standard deviation for the data above.
$\bar{x}=30.56$ and $s=13.87$

