\qquad MAT 221
Fall 2014
Problem Set 8

Formulae:

(i) The sampling distribution for a large SRS of size $n(n \geq 30)$ from a population with mean μ and standard deviation σ is $N(\mu, \sigma / \sqrt{n})$. This formula always applies regardless of the sample size if the distribution is normal.
(ii) If you take an simple random sample from a large population with a proportion of p success then the number of counts $X \approx N(n p, \sqrt{n p(1-p)})$ and the sample proportion of successes is $\hat{p} \approx N\left(p, \sqrt{\frac{p(1-p)}{n}}\right)$.

Problem 1: For women aged 18-24, systolic blood pressures are normally distributed with a mean of 114.8 and a standard deviation of 13.1. Hypertension is commonly defined as a systolic blood pressure above 140.
(a) Find the proportion of women who have systolic blood pressure greater than 140.

$$
z_{140}=\frac{140-114.8}{13.1}=\frac{25.2}{13.1}=1.92 \rightsquigarrow 0.9726 \Rightarrow 1-0.9726=0.0274
$$

(b) If 5 women in that age group are randomly selected, find the probability that their mean systolic blood pressure is above 140 .

$$
z_{140}=\frac{140-114.8}{13.1 / \sqrt{5}}=\frac{25.2}{5.85}=4.31 \rightsquigarrow 1.00 \Rightarrow 1-1.00=0.0000
$$

(c) If for men aged 18-24, the measurement of systolic blood pressure has a mean of 125.2 and a standard deviation of 14.2. How does this situation differ from the situation in the parts above? [Hint: What is the distribution in this case. . . read carefully!]

In this case, we do not know that the population is normally distributed. To do the calculations above, we need to know the distribution is normally distributed or that $n \geq 30$ so that the Central Limit Theorem applies.
(d) If a group of 5 men are randomly selected, can you find the probability that their mean systolic blood pressure is below 120 ? What about if you selected a group of 20 men? What about a group of 50 or 100 men?

We cannot do this for a group of 5 or 20 men; however, we could perform the calculation if we used a group of 50 or 100 men because then the Central Limit Theorem would apply.

Problem 2: Consider the fact that 8% of men are colorblind.
(a) Consider a SRS of 7 men. What is the probability that at least 3 of these men are colorblind?

$$
P(\geq 3)=P(3)+P(4)+P(5)+P(6)+P(7)=0.0128+0.0011+0.0001+0.0000=0.014
$$

(b) Consider a SRS of 500 men. What is the approximate probability that at least 50 men in this sample are color blind?

We have $N(n p, \sqrt{n p(1-p)})=N(40,6.0663)$. Note $n p=40$ and $n(1-p)=460$.

$$
z_{50}=\frac{50-40}{6.0663}=\frac{10}{6.0663}=1.65 \rightsquigarrow 0.9505 \Rightarrow 1-0.9505=0.0495
$$

(c) Consider a SRS of 500 men. What is the approximate probability that less than 5% of these men are colorblind?

We have $N\left(p, \sqrt{\frac{p(1-p)}{n}}\right)=N(0.08,0.0121)$. Note $n p=40$ and $n(1-p)=460$.

$$
z_{0.05}=\frac{0.05-0.08}{0.0121}=\frac{-0.03}{0.0121}=-2.48 \rightsquigarrow 0.0066
$$

