Name: \qquad MAT 221
Fall 2014
Problem 1: Suppose that a student measuring the boiling temperature of a certain liquid observes the six readings and obtained the sample mean of 101.8 (in degrees Celsius). Also assume that the standard deviation for this procedure, σ, is 1.2 degrees.
(a) Construct a 95% confidence interval for the mean boiling temperature of this liquid.

We have $z^{*}=1.960$. Then

$$
\begin{gathered}
\left(\bar{x}-z^{*} \frac{\sigma}{\sqrt{n}}, \bar{x}+z^{*} \frac{\sigma}{\sqrt{n}}\right) \\
\left(101.8-1.960 \frac{1.2}{\sqrt{6}}, 101.8+1.960 \frac{1.2}{\sqrt{6}}\right) \\
(100.84,102.76)
\end{gathered}
$$

(b) Suppose you wanted to cut the margin of error to ± 0.5 with a confidence interval of 95%. How many total readings would have to be included in the new sample?

$$
n \geq\left(\frac{1.960 \cdot 1.2}{0.5}\right)^{2}=(4.704)^{2}=22.128 \rightsquigarrow 23
$$

Problem 2: A waitress' tips are somewhat left-skewed with mean $\$ 4.75$ and standard deviation $\$ 2.50$, A simple random sample of 40 of her tips is taken. Find the approximate probability that the sample mean of these 40 tips is greater than $\$ 5.50$. Does the skewness of the tips effect your calculations?

$$
z_{5.50}=\frac{5.50-4.75}{2.50 / \sqrt{40}}=\frac{0.75}{0.395}=1.90 \rightsquigarrow 0.9713 \Rightarrow 1-0.9713=0.0287
$$

The skewness does not matter. We have $n \geq 30$ so that the Central Limit Theorem applies regardless of the distribution.

Problem 3: The percentage of students at some university that wear contacts is 30%.
(a) A simple random sample of 8 university students is taken. What is the probability that exactly 5 of these students wear contact lenses?
(b) A large sample of 150 students is taken. Find the mean μ and standard deviation σ of the number of students in this sample who wear contact lenses.

We have $\mu=n p=45$ and $\sigma=\sqrt{n p(1-p)}=5.61$.
(c) For the larger sample in (b), use the normal approximation to estimate the probability that at least 55 in the sample wear contact lenses.

$$
P(\geq 55) \approx \frac{55-45}{5.61}=\frac{10}{5.61}=1.78 \rightsquigarrow 0.9625 \Rightarrow 1-0.9625=0.0375
$$

Problem 4: A exam for the preparedness of students for college has mean $\mu=75$ and standard deviation $\sigma=8$. What is the proportion of students that scored lower than 82 ? If the top 3% get a scholarship, what is the minimum score a student would have to get to have a hope of getting the scholarship?

$$
z_{82}=\frac{82-75}{8}=\frac{7}{8}=0.875 \rightsquigarrow 0.8092
$$

The top 3% corresponds to the bottom 97% which corresponds to a z-score of 1.88 . But then

$$
1.88=\frac{x-75}{8}
$$

so that $x=90.04$.

Problem 5: Many students at an "elite" university took a college exam over the course of a decade. Over this time, the exam scores had mean 558 with standard deviation 139 . We suspect that the grades of these students has actually increased over time. We take a simple random sample of 100 students at an "elite" university, and find a sample mean of 585 for this elite school.
(a) State H_{0} and H_{a} for this situation.

$$
\left\{\begin{array}{l}
H_{0}: \mu=558 \\
H_{a}: \mu>558
\end{array}\right.
$$

(b) Use a significance level of $\alpha=0.05$ to test H_{0} against H_{a}. Compute the test statistic and p-value. Determine whether H_{0} is rejected and write your conclusion in words.

$$
z_{585}=\frac{585-558}{139 / \sqrt{100}}=\frac{27}{13.9}=1.94 \rightsquigarrow 0.9738 \Rightarrow 1-0.9738=0.0262
$$

Therefore, we have test statistic 1.94 and p-value 0.0262 . Because our p-value is less than the significance level of 0.05 , there is sufficient evidence to reject the null hypothesis.

