MAT 397 CAL III Dmytro Yeroshkin Fall 2015

EXAM 2

Your Name (please PRINT): _	
Student ID Number:	

INSTRUCTIONS

- Fill in the above items.
- There is a total of 8 problems + 1 bonus problem, for a maximum possible total value of 100 points (110 with bonus). Make sure you have all 10 test pages (this cover page + 9 test pages). You are responsible to check that your test booklet has all 10 pages. Alert a proctor if your copy is missing any pages.
- Show all your work. Only minimal credit will be given for answers without supporting work.
- Write your answer in the box at the bottom of pages 2-10 (except problem 1).
- Use the back of test pages if additional space is needed, and for scratch paper.
- No calculators or other electronic devices; no outside notes; no outside tables are allowed on this exam. Any use of calculators or electronic devices, or outside notes is a violation of the Academic Integrity Policy.

Do not write below this line

Question	Points	Score
1	10	
2	10	
3	15	
4	15	
5	10	
6	10	
7	15	
8	15	
9	0	
Total:	100	

Answer for part (a):
Answer for part (b):
Answer for part (c):

1. (10 points) Sketch and label the level curves f(x,y)=-1,0,1 for the function

 $f(x,y) = \cos(x-y).$

			1	١.	l	I	I	1
				π				
				$\pi/2$				
				,				
	_π	$-\pi/2$				$\pi/2$		\rightarrow
	$-\pi$	$-\pi/2$				$\pi/2$		π
	$-\pi$	$-\pi/2$				$\pi/2$		π
	$-\pi$	$-\pi/2$				$\pi/2$		π
	$-\pi$	$-\pi/2$				$\pi/2$		π
	$-\pi$	$-\pi/2$				$\pi/2$		π
	$-\pi$	$-\pi/2$				$\pi/2$		π
	$-\pi$	$-\pi/2$		/0		$\pi/2$		π
	$-\pi$	$-\pi/2$		$-\pi/2$		$\pi/2$		π
	$-\pi$	$-\pi/2$		$-\pi/2$		$\pi/2$		π
	$-\pi$	$-\pi/2$		$-\pi/2$		$\pi/2$		π
	$-\pi$	$-\pi/2$		$-\pi/2$		$\pi/2$		π
	$-\pi$	$-\pi/2$		$-\pi/2$		$\pi/2$		π
	$-\pi$	$-\pi/2$		$-\pi/2$		$\pi/2$		π
	$-\pi$	$-\pi/2$		$-\pi/2$		$\pi/2$		π
_	$-\pi$	$-\pi/2$		$-\pi/2$		$\pi/2$		π
_	$-\pi$	$-\pi/2$				$\pi/2$		π
	$-\pi$	$-\pi/2$		$-\pi/2$ $-\pi$		$\pi/2$		π

2.	(10 points) Determine whether the follow of the limit. If it does not exist, find two	0	
	different values.		
	$\lim_{(x,y)\to (}$	$_{0,0)} \frac{x^2 y^2}{x^2 + y^2}$	

Answer:

Answer:		

3. (15 points) Find **all** of the first and second order partial derivatives of

 $f(x,y) = e^{xy} + \cos(x - y)$

4.	Consider	the surface	$z = 2x^2$	$-xy+y^3$	-x + 1
----	----------	-------------	------------	-----------	--------

(a) (10 points) Find the tangent plane to this surface at the point (1,3,8).

(b) (5 points) Find the point(s) at which the tangent plane is horizontal (parallel to the xy-plane).

Answer for part (a):

Answer for part (b):

5.	(10 points) A box is 4 feet wide, 3 feet long, and 5 feet high. The width is shrinking $\frac{1}{3}$ feet per hour, the length is shrinking at $\frac{1}{5}$ feet per hour, and the height is increasin at $\frac{1}{2}$ feet per hour. At what rate is the volume of box changing?	at ng
	Answer:	

6.	Consider	f(x, y, z)	$= x^2 +$	$z\cos(y)$	-xyz.
----	----------	------------	-----------	------------	-------

(a) (5 points) Find the direction of fastets increase of f at (2,0,-5).

(b) (5 points) Find the directional derivative of f at (2,0,-5) in the direction of $\mathbf{v}=2\mathbf{i}-4\mathbf{j}+\mathbf{k}$.

Answer for part (a):

Answer for part (b):

•	(15 points) Find the critical points of $f(x,y) = 3x^3 - 2x^2 + xy + y^2$. For each crit point determine whether it is a local maximum, local minimum or a saddle point.	ica
	Answer:	

8. (15 points) Find the maximum value of $f(x, y, z) = x^2 - xy - z^2$ along the surface $4x^2 + 9y^2 + z^2 = 16$.

Answer:

).	(10 points (bonus)) Find an equation of the surface consisting of all points P for which the distance from P to the y -axis is three timesthe distance from P to the xy -plan Identify the surface.	e.
	Answer:	