Quiz 11 Calculus III Fall 2015

Names:
Solve the following problems. Each problem is worth 5 points.

Q1. Let $\mathbf{F}(x, y)=y \mathbf{i}+x \mathbf{j}$, and let C be the straight line segment from $(4,6)$ to $(1,0)$.
(b) Check that \mathbf{F} is a conservative vector field.
(b) Find a function $f(x, y)$ such that $\mathbf{F}(x, y)=\nabla f(x, y)$.
(b) Use part (b) to compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$. (Hint: Fundamental Theorem for line integral).

Q2.

1. Use Green's Theorem to compute

$$
I=\int_{C} x y d x+x^{2} d y
$$

where C is the boundary of the square with vertices $(0,0),((1,0),(1,1)$ and $(0,1)$ in the counterclockwise direction.
2. Use Green's Theorem to compute the area of the ellipse: $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$.

