Volumes of Rotation

Problem 1: The volume of a sphere of radius r is $V=\frac{4 \pi}{3} r^{3}$. Prove this by finding the volume created by revolving the curve $y=\sqrt{r^{2}-x^{2}}$ about the x-axis.

Problem 2: The volume of a right circular cone with base radius r and height h is given by $V=$ $\frac{1}{3} \pi r^{2} h$. Prove this by finding the volume created by revolving the region bound by $y=\frac{r x}{h}, x$-axis, and y-axis about the y-axis.

Problem 3: Find the volume formed by the surface created by rotating the area bound by the curve $y=x^{2 / 3}, x=1$, and the x-axis about the y-axis.

Problem 4: Find the volume of the figure formed by rotating the area $y=\frac{5}{x^{2}}, x=5, x=1$, and the x-axis around the y-axis.

Problem 5: Find the volume created by the surface formed by rotating the area between the curves $y=3 x-4$ and $y=x^{2}-4 x+6$ around the line $y=-2$.

