Problem 1:

- (i) Find the first 5 terms of the sequence $a_n = \sin(1/n)$.
- (ii) Give a formula for the following sequence: 3, 7, 15, 31, 63,...

Problem 2: Find the limit of the following sequences. If the sequence does not converge, write DNE.

(i)
$$a_n = \frac{7n^4 - 2n^2 - n}{3n^4 - n^3 + 9n^2}$$

(ii)
$$a_n = \frac{\ln(12n)}{5n}$$

(iii)
$$a_n = \cos(\pi n) - \frac{1}{n^4}$$

(iv)
$$a_n = \ln(6n^4) - 4\ln n$$

Problem 3: Mark the following statements True or False.

(i) The series
$$\sum_{n=1}^{\infty} \frac{3n+6}{2n^2}$$
 converges.

- (ii) The series $\cos 1 + \cos(1/2) + \cos(1/4) + \cos(1/16) + \cdots$ diverges.
- (iii) If a_n is a sequence and $\lim_{n\to\infty} a_n = 0$, then $\sum a_n$ converges.
- (iv) The series $5-5+5-5+5-5+\cdots$ converges to 0.

Bonus: Recall that given the sequence $s_n = \left(1 + \frac{1}{n}\right)^n$ that we have $\lim_{n \to \infty} s_n = e$. Find the limit of the sequence $a_n = \left(\frac{2n+4}{2n}\right)^{4n}$.