Problem 1:

(i) Find the first 5 terms of the sequence $a_{n}=\sin (1 / n)$.

$$
a_{1}=\sin (1), \quad a_{2}=\sin (1 / 2), \quad a_{3}=\sin (1 / 3), \quad a_{4}=\sin (1 / 4), \quad a_{5}=\sin (1 / 5)
$$

(ii) Give a formula for the following sequence: $3,7,15,31,63, \ldots$

$$
a_{n}=2^{n+2}-1 \text { or } a_{0}=3 \text { with } a_{n+1}=2 a_{n}+1
$$

Problem 2: Find the limit of the following sequences. If the sequence does not converge, write DNE.
(i) $a_{n}=\frac{7 n^{4}-2 n^{2}-n}{3 n^{4}-n^{3}+9 n^{2}}$ \qquad
(ii) $a_{n}=\frac{\ln (12 n)}{5 n}$
0
(iii) $a_{n}=\cos (\pi n)-\frac{1}{n^{4}}$
(iv) $a_{n}=\ln \left(6 n^{4}\right)-4 \ln n$

$D N E$
$\ln (6)$

Problem 3: Mark the following statements True or False.
(i) The series $\sum_{n=1}^{\infty} \frac{3 n+6}{2 n^{2}}$ converges.

False
True
False

(iv) The series $5-5+5-5+5-5+\cdots$ converges to 0 .

False

Bonus: Recall that given the sequence $s_{n}=\left(1+\frac{1}{n}\right)^{n}$ that we have $\lim _{n \rightarrow \infty} s_{n}=e$. Find the limit of the sequence $a_{n}=\left(\frac{2 n+4}{2 n}\right)^{4 n}$.
$\lim _{n \rightarrow \infty}\left(\frac{2 n+6}{2 n}\right)^{3 n}=\lim _{n \rightarrow \infty}\left(1+\frac{3}{n}\right)^{3 n}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n / 3}\right)^{3 n}=\lim _{n \rightarrow \infty}\left[\left(1+\frac{1}{n / 3}\right)^{n / 3}\right]^{9}=\left[\lim _{n \rightarrow \infty}\left(1+\frac{1}{n / 3}\right)^{n / 3}\right]^{9}=e^{9}$

