
Name: Caleb McWhorter — Solutions Quiz 9: Polar Integration
MAT 296 Spring 2015

Formulae: Recall the formula you certainly already have memorized for the final:

A=
1
2

∫ b

a
r(θ )2 dθ

and this formula

cos2 θ =
1+ cos2θ

2

Problem 1: Find the area of the region inside the circle r = 2cosθ but outside the circle r = 1. [You
should draw the picture of these curves first.]
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Bonus 1 What is the sum of the following series:
∞
∑

n=1

1
n2

∞
∑
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1
n2
=
π2
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Bonus 2 What is the name of the following series:
∞
∑

n=1

1
n

The harmonic series.

Bonus 3 Does the following series diverge or converge? Why? [Hint: What grows faster—polynomials
or logs?]

∑ 1
ln(ln(ln(n)))

Note that n> ln n> ln(ln n)> ln(ln(ln(n))) so that
1
n
<

1
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<
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<

1
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. But then
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<
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But the harmonic series diverges, so that by the Comparison Test, the given series diverges.


