Formulae: Recall the formula you certainly already have memorized for the final:

$$
A=\frac{1}{2} \int_{a}^{b} r(\theta)^{2} d \theta
$$

and this formula

$$
\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}
$$

Problem 1: Find the area of the region inside the circle $r=2 \cos \theta$ but outside the circle $r=1$. [You should draw the picture of these curves first.]

$$
\begin{gathered}
2 \cos \theta=1 \\
\cos \theta=\frac{1}{2} \\
\theta=\frac{\pi}{3}, \frac{5 \pi}{3} \simeq-\frac{\pi}{3}
\end{gathered}
$$

$$
\frac{1}{2} \int_{-\pi / 3}^{\pi / 3} 1^{2} d \theta=\left.\frac{1}{2} \theta\right|_{-\pi / 3} ^{\pi / 3}=\frac{1}{2}\left(\frac{\pi}{3}-\frac{-\pi}{3}\right)=\frac{1}{2} \cdot \frac{2 \pi}{3}=\frac{\pi}{3}
$$

$\frac{1}{2} \int_{-\pi / 3}^{\pi / 3}(2 \cos \theta)^{2} d \theta=\frac{1}{2} \int_{-\pi / 3}^{\pi / 3} 4 \cos ^{2} \theta d \theta=2 \int_{-\pi / 3}^{\pi / 3} \cos ^{2} \theta d \theta=2 \int_{-\pi / 3}^{\pi / 3} \frac{1+\cos 2 \theta}{2} d \theta$

$$
=\int_{-\pi / 3}^{\pi / 3}(1+\cos 2 \theta) d \theta
$$

$$
=\left[\theta+\frac{\sin 2 \theta}{2}\right]_{-\pi / 3}^{\pi / 3}
$$

$$
=\left(\frac{\pi}{3}+\frac{\sin (2 \pi / 3)}{2}\right)-\left(-\frac{\pi}{3}+\frac{\sin (-2 \pi / 3)}{2}\right)
$$

$$
=\frac{\pi}{3}+\frac{\sqrt{3}}{4}+\frac{\pi}{3}+\frac{\sqrt{3}}{4}=\frac{2 \pi}{3}+\frac{\sqrt{3}}{2}
$$

$$
A=\frac{1}{2} \int_{-\pi / 3}^{\pi / 3}(2 \cos \theta)^{2} d \theta-\frac{1}{2} \int_{-\pi / 3}^{\pi / 3} 1^{2} d \theta=\left(\frac{2 \pi}{3}+\frac{\sqrt{3}}{2}\right)-\frac{\pi}{3}=\frac{\pi}{3}+\frac{\sqrt{3}}{2}
$$

Bonus 1 What is the sum of the following series: $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

Bonus 2 What is the name of the following series: $\sum_{n=1}^{\infty} \frac{1}{n}$

The harmonic series.

Bonus 3 Does the following series diverge or converge? Why? [Hint: What grows faster-polynomials or logs?]

$$
\sum \frac{1}{\ln (\ln (\ln (n)))}
$$

Note that $n>\ln n>\ln (\ln n)>\ln (\ln (\ln (n)))$ so that $\frac{1}{n}<\frac{1}{\ln n}<\frac{1}{\ln (\ln n)}<\frac{1}{\ln (\ln (\ln (n)))}$. But then

$$
\sum \frac{1}{n}<\sum \frac{1}{\ln n}<\sum \frac{1}{\ln (\ln n)}<\sum \frac{1}{\ln (\ln (\ln (n)))}
$$

But the harmonic series diverges, so that by the Comparison Test, the given series diverges.

