Formulae: Recall the formula you *certainly* already have memorized for the final:

$$A = \frac{1}{2} \int_{a}^{b} r(\theta)^2 \, d\theta$$

and this formula

$$\cos^2\theta = \frac{1+\cos 2\theta}{2}$$

Problem 1: Find the area of the region inside the circle $r = 2\cos\theta$ but outside the circle r = 1. [You should draw the picture of these curves first.]

Bonus 1 What is the sum of the following series: $\sum_{n=1}^{\infty} \frac{1}{n^2}$

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

Bonus 2 What is the name of the following series: $\sum_{n=1}^{\infty} \frac{1}{n}$

The harmonic series.

Bonus 3 Does the following series diverge or converge? Why? [Hint: What grows faster—polynomials or logs?]

$$\sum \frac{1}{\ln(\ln(\ln(n)))}$$
Note that $n > \ln(\ln n) > \ln(\ln(\ln(n)))$ so that $\frac{1}{n} < \frac{1}{\ln n} < \frac{1}{\ln(\ln n)} < \frac{1}{\ln(\ln(n))}$. But then
$$\sum \frac{1}{n} < \sum \frac{1}{\ln n} < \sum \frac{1}{\ln(\ln n)} < \sum \frac{1}{\ln(\ln(n))}$$

But the harmonic series diverges, so that by the Comparison Test, the given series diverges.