Final Homeworks

These are the final few problem sets for the course. All of the problems below are due on August 4th. They are broken into 3 smaller problem by topic for your convenience.

First Problem Set

Problem 1: Find all angles x between 0 and 2π such that $\sin x=\sin 37^{\circ}$.
Problem 2: Find all angles y between 0 and 2π such that $\cos y=\cos 115^{\circ}$.
Problem 3: Find the angles x such that $\cos x=\sin 223^{\circ}$.
Problem 4: Convert the following angles to radians:
(a) 30°
(b) 60°
(c) 45°
(d) 18°
(e) 225°
(f) 330°

Problem 5: Convert the following angles to degrees:
(a) $\frac{5 \pi}{6}$
(b) $\frac{15 \pi}{4}$
(c) $\frac{3 \pi}{4}$
(d) $\frac{5 \pi}{3}$
(e) $\frac{11 \pi}{2}$
(f) $\frac{\pi}{18}$

Problem 6: What Quadrant I angles are equivalent to the following:
(a) 110°
(b) 345°
(c) 95°
(d) 123°
(e) 187°
(f) 210°

Problem 7: Use the identity $\sin (x-y)=\sin x \cos y+\cos x \sin y$ to find $\sin 15^{\circ}$. [Hint: Think what angles you know for $\sin x$ and $\cos x$.]

Problem 8: Find $\tan 60^{\circ}$ using $\sin x$ and $\cos x$, show your work.
Problem 9: Use the identity $\cos ^{2} x=\frac{1+\cos (2 x)}{2}$ to find $\cos 15^{\circ}$.

Second Problem Set

Problem 1: Find the following:
(a) $\sin \left(\frac{2 \pi}{3}\right)$
(b) $\cos \left(\frac{3 \pi}{4}\right)$
(c) $\tan \left(-\frac{3 \pi}{4}\right)$
(d) $\cos \left(\frac{11 \pi}{6}\right)$

Problem 2: The arc length of a circle of radius r from the x-axis to some angle θ (in radians) along the circle is $s=r \theta$. Find the arc length of a segment on a circle of radius 2 formed by the angle 45°. What is the length if the angle is $\frac{2 \pi}{3}$?

Problem 3: The point $(-0.8,0.6)$ on a circle of radius 1 forms an angle θ with the origin. What is this angle, say θ, approximately? Calculate $\sin \theta$ and $\cos \theta$ exactly.

Problem 4: What are the midline, amplitude, and period for $f(x)=6 \sin (2 \pi x)$?
Problem 5: What are the midline, amplitude, and period for $g(y)=2 \cos (\pi y)-8$?
Problem 6: It is known that for all $\theta, \cos ^{2} \theta=1-\sin ^{2} \theta$. If $\sin \theta=\frac{3}{4 \sqrt{2}}$, what is $\cos \theta$?

Third Problem Set

Problem 1: Find the equation of a line passing through the points $(-2,6)$ and $(3,4)$. Is this the only possible line? Explain.

Problem 2: Find the equation of a line with slope 6 and passing through the point $(3,1)$. Is this the only possible line? Explain.

Problem 3: Find the equation of a line perpendicular to the line $2 x+3 y=6$ that passes through the point $(-1,6)$. Is this the only possible line? Explain.

Problem 4: Find the vertex of the parabola $3 x^{2}-6 x+12$.
Problem 5: Find the hypotenuse of a right triangle with legs having length 48 and 64, respectively.
Problem 6: Find the number of digits in $134^{12,145}$.
Problem 7: Solve for x in the equation $\log _{6}(2 x-1)+2=3$.
Problem 8: Solve for x in the equation $e^{1-3 x}+1=5$.
Problem 9: Solve for x in the equation $x^{2} 5^{x}-16\left(5^{x}\right)=0$.

