Problem 1: Decide whether the following statements are true or false:
(a) If f, g are differentiable, then $\frac{d}{d x}(f g)=f^{\prime} g^{\prime}$.
(b) If a function is continuous, then it is differentiable.
(c) If a function is differentiable, then it is continuous.
(d) If $\lim _{x \rightarrow a} f(x)$ exists, then $\lim _{x \rightarrow a^{+}} f(x)$ and $\lim _{x \rightarrow a^{-}} f(x)$ exist.
(e) If $\lim _{x \rightarrow a} f(x)$ exists, then $\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)$.
(f) If $\lim _{x \rightarrow a^{+}} f(x)$ and $\lim _{x \rightarrow a^{-}} f(x)$ exist, then $\lim _{x \rightarrow a} f(x)$ exists.
(g) If $\lim _{x \rightarrow a} f(x)=M$ and $\lim _{x \rightarrow a} g(x)=N$, then $\lim _{x \rightarrow a}\left(\frac{f(x)}{g(x)}\right)=\frac{M}{N}$.
(h) Polynomials are everywhere continuous.
(i) Rational functions are continuous everywhere.
(j) A tangent line to a function $f(x)$ intersects the function only once.
(k) A tangent line to a function $f(x)$ cannot intersect the function infinitely many times.
(1) $\lim _{x \rightarrow a}(f(x)+g(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$.
(m) All continuous functions have at least one x-value at which they are differentiable.
(n) All functions on \mathbb{R} have a limit at some x-value in their domain.
(o) If f, g are differentiable, then $\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{f^{\prime}(x)}{g^{\prime}(x)}$.
(p) A tangent line to a function $f(x)$ at $x=a$ has the same value of $f(x)$ at $x=a$.
(q) Every function has a tangent line.
(r) If $g(x)<f(x)$ on (a, b), then $g^{\prime}(x)<f^{\prime}(x)$ on (a, b).
(s) If $h(x)=\frac{f(x)}{g(x)}$ and $g(a)=0$, then $x=a$ has a vertical asymptote at $x=a$.
(t) If $\lim _{x \rightarrow \infty} f(x)=L$, i.e. x has a horizontal asymptote, then $\lim _{x \rightarrow-\infty} f(x)=L$.
(u) There is a function with a zero at $x=0$ and a y-intercept of 6 .
(v) If $f(x)$ is differentiable and decreasing on (a, b), then $f^{\prime}(x)<0$ on (a, b).
(w) If $f^{\prime}(x)>0$ on (a, b), then $f(x)$ is increasing on (a, b).
(x) If $f^{\prime}(x)>0$ on (a, b), then $f(x)>0$ on (a, b).
(y) If $f(x)$ is continuous at $x=a$, then $\lim _{x \rightarrow a} f(x)$ exists.
(z) If $f(x), g(x)$ are continuous, then $\frac{f(x)}{g(x)}$ is continuous whenever it is defined.

Problem 2: Evaluate the following limits:
(a) $\lim _{x \rightarrow 1} \frac{3 x^{2}+4 x+1}{5 x+7}$
(b) $\lim _{x \rightarrow 2}(4 x-1)$
(c) $\lim _{x \rightarrow 3} \sin (\pi x)$
(d) $\lim _{x \rightarrow-7} \frac{\tan ^{3} x}{x-\pi}$

Problem 3: Give an example of the following:
(a) a continuous function (algebraically and graphically).
(b) a differentiable function.
(c) a function which is not differentiable (algebraically and graphically).
(d) a function whose limit exists (algebraically and graphically).
(e) a function whose limit does not exist (algebraically and graphically).
(f) a function whose left and right limits exist but whose limit does not exist.
(g) a function whose left and right limits are equal but whose limit does not exist.
(h) a function with a vertical asymptote.
(i) a function with a horizontal asymptote.
(j) a function with a zero.
(k) a function with no zeros.
(l) a function with no y-intercept.
(m) a function with a jump discontinuity.
(n) a function with an infinite discontinuity.
(o) a function with a removable discontinuity.
(p) a function with an infinite amount of zeros.
(q) a function with infinitely many infinite discontinuities.
(r) a function with infinitely many removable discontinuities.
(s) a polynomial with roots $x=-1,2,3$.
(t$)$ a polynomial with roots $(-6,0),(2,0)$ and y-intercept $(0,5)$.
(u) a function with y-intercept -2 and a zero at $x=4$.
(v) a graph which is not the plot of a function.
(w) a graph which is not a function of x or y but is a function of some variable.

Problem 4: Define $f(x)$ to be the following function

$$
f(x)= \begin{cases}1-x, & x \leq 1 \\ x^{2}+a x+b, & x>1\end{cases}
$$

Find values a, b so that $f(x)$ is everywhere continuous and differentiable.

Problem 5: Let $f(x)=x^{2}+5 x-1$. Find the average velocity of $f(x)$ on $[-1,2]$. Use the definition of the derivative to find the instantaneous velocity of $f(x)$ at $x=1$.

Problem 6: Find the following limit:

$$
\lim _{x \rightarrow \infty} \sqrt{x^{2}+3 x+1}-2 x
$$

Problem 7: Find the following limit:

$$
\lim _{x \rightarrow \infty} \sqrt{x+2}-\sqrt{x-1}
$$

Problem 8: Evaluate the following limit:

$$
\lim _{x \rightarrow \infty} \ln \left(3 x^{2}-4\right)-\ln \left(2 x^{2}+1\right)
$$

Problem 9: Define $f(x)$ to be the following function:

$$
f(x)= \begin{cases}x^{2} 2^{-x}, & x \geq 0 \\ 4-x, & x<0\end{cases}
$$

Use the definition of $f(x)$ to find the following:
(a) $f(0)$
(b) $\lim _{x \rightarrow 2} f(x)$
(c) y-intercepts
(d) $\lim _{x \rightarrow 0^{-}} f(x)$
(e) x-intercepts
(f) $\lim _{x \rightarrow 0^{+}} f(x)$
(g) Classify any discontinuities for $f(x)$
(h) $\lim _{x \rightarrow 0} f(x)$

Problem 10: Define $f(x)$ to be the following function:

$$
f(x)=\frac{(x+1)(2 x-3)(x+2)}{(3 x-7)(x+2)(x+3)}
$$

(a) What is the y-intercept of $f(x)$?
(b) What are the x-intercepts of $f(x)$?
(c) What are the vertical asymptotes for $f(x)$?
(d) Where is $f(x)$ continuous?
(e) If $f(x)$ has any discontinuities, classify them.
(f) Identify any horizontal asymptotes $f(x)$ might have.

Problem 11: Evaluate the following limits:
(a) $\lim _{x \rightarrow 0^{+}} \ln x$
(b) $\lim _{x \rightarrow 2^{+}} \frac{x+6}{x-2}$
(c) $\lim _{x \rightarrow 1^{-}} \frac{x-4}{x+1}$
(d) $\lim _{x \rightarrow-2} \frac{2 x+4}{x+2}$
(e) $\lim _{x \rightarrow 0} \frac{\cos x}{x}$

Problem 12: Use the definition of the derivative to find the derivative of the following functions:
(a) $1 / x$
(b) $x^{2}+3 x-2$
(c) $1 / x^{2}$
(d) $\sin x$
(e) $\cos x$
(f) $\sqrt{x+3}$

Problem 13: Calculate the following limits:
(a) $\lim _{x \rightarrow 0} \csc x-\cot x$
(b) $\lim _{x \rightarrow 0} \frac{3 x}{\sin 5 x}$
(c) $\lim _{x \rightarrow 0} \frac{\csc 7 x}{\csc 5 x}$
(d) $\lim _{x \rightarrow 0} \sin ^{2} 3 x$
(e) $\lim _{x \rightarrow 0} \frac{\tan x}{\sin x}$
(f) $\lim _{x \rightarrow 0} \frac{\sin ^{2}(3 x)}{x}$
(g) $\lim _{x \rightarrow 0} \frac{\tan x}{x}$

Problem 14: Evaluate the following limits:
(a) $\lim _{x \rightarrow \infty} \sin x$
(b) $\lim _{x \rightarrow \infty}\left(\frac{1}{2}\right)^{x}$
(c) $\lim _{x \rightarrow \infty} 7^{x}$
(d) $\lim _{x \rightarrow-\infty}\left(\frac{2}{3}\right)^{x}$
(e) $\lim _{x \rightarrow \infty} \frac{3 x^{2}+4 x-5}{4 x^{2}-3 x+5}$
(f) $\lim _{x \rightarrow \infty} \frac{16 x^{2}+17 x+12}{x^{3}-2 x^{2}-14 x+1}$
(g) $\lim _{x \rightarrow \infty} \frac{4-x^{2}}{x+7}$

Problem 15: Use Squeeze Theorem to evaluate the following limits:
(a) $\lim _{x \rightarrow 0} x \sin (1 / x)$
(b) $\lim _{x \rightarrow 0} x^{2} \cos (1 / x)$
(c) $\lim _{x \rightarrow 0}|x| \cos ^{2}(1 / x)$
(d) $\lim _{x \rightarrow 0} x^{3} e^{\sin (1 / x)}$
(e) $\lim _{x \rightarrow \infty} \frac{x^{x}}{(2 x)!}$
(f) $\lim _{x \rightarrow \infty}(x!)^{1 / x^{2}}$

Problem 16: Use the Intermediate Value Theorem to show there is a solution to the following equations over the given interval:
(a) $4^{x}=x^{2}+1$ over $[-2,1]$
(b) $x^{3}+\cos x=2$ over $[0,10]$
(c) $e^{-x^{2}}-x=0$ over $[0,1]$
(d) $x^{3}+x+1=0$ over $[-1,0]$
(e) $\pi^{13.475} x^{15}-\sqrt{e^{3}} x^{1} 2-x^{9}+1478 x+14.2345=e^{\pi} x^{13}-\sqrt{1+\sqrt{2+\sqrt{3}}} x^{10}-99.99 x^{2}+2^{4^{6^{8}}}$

Problem 17: A function $f(x)$ is plotted above. Use this plot to answer the following questions:

(a) $\lim _{x \rightarrow 2^{+}} f(x)$
(g) $\lim _{x \rightarrow-2} f(x)$
(b) $\lim _{x \rightarrow 2^{-}} f(x)$
(h) $f(-2)$
(c) $\lim _{x \rightarrow 2} f(x)$
(i) $\lim _{x \rightarrow 4^{-}} f(x)$
(d) $f(2)$
(j) $\lim _{x \rightarrow 4^{+}} f(x)$
(e) $\lim _{x \rightarrow-2^{-}} f(x)$
(k) $\lim _{x \rightarrow 4} f(x)$
(f) $\lim _{x \rightarrow-2^{+}} f(x)$
(l) $f(4)$
(a) What is $f(2)$?
(b) $\lim _{x \rightarrow 2^{+}} f(x)$
(c) $\lim _{x \rightarrow 2^{-}} f(x)$
(d) $\lim _{x \rightarrow 2} f(x)$
(e) $\lim _{x \rightarrow 4^{-}} f(x)$
(f) $\lim _{x \rightarrow 4^{+}} f(x)$
(g) $\lim _{x \rightarrow 4} f(x)$
(h) What is $f(4)$?
(i) $\lim _{x \rightarrow-1^{-}} f(x)$
(j) $\lim _{x \rightarrow-1^{+}} f(x)$
(k) $\lim _{x \rightarrow-1} f(x)$
(1) $\lim _{x \rightarrow-7^{-}} f(x)$
(m) $\lim _{x \rightarrow-7^{+}} f(x)$
(n) What are the zeros of $f(x)$?
(o) What is the y-intercept for $f(x)$?
(p) Where is $f(x)$ continuous?
(q) Find and classify the discontinuities of $f(x)$
(r) $\lim _{x \rightarrow \infty} f(x)$
(s) $\lim _{x \rightarrow-\infty} f(x)$
(t) Does $f(x)$ have any horizontal asymptotes?
(u) Give at least 6 points at which $f(x)$ is not differentiable. Explain why $f(x)$ is not differentiable there.

