Problem 1: Verify that the function $f(x)=\frac{x-1}{x+2}$ satisfies the condition for the Mean Value Theorem on $[0,2]$ and find any points $c \in[0,2]$ satisfying the condition guaranteed by the theorem.

Because $f(x)$ is a rational function, $f(x)$ is continuous and differentiable everywhere it is defined, i.e. on every interval not containing $x=-2$. Therefore, $f(x)$ is continuous on [0,2] and differentiable on $(0,2)$. Therefore, the Mean Value Theorem applies: there exists $c \in(0,2)$ with $f(2)-f(0)=f^{\prime}(c)(2-0)$. Now $f(2)=\frac{1}{4}$ and $f(0)=-\frac{1}{2}$. We know that $f^{\prime}(x)=\frac{(x+2)-1(x-1)}{(x+2)^{2}}=\frac{3}{(x+2)^{2}}$. Then

$$
\begin{aligned}
\frac{1}{4}-\frac{-1}{2} & =2 \cdot \frac{3}{(c+2)^{2}} \\
\frac{3}{4} & =\frac{6}{(c+2)^{2}} \\
(c+2)^{2} & =8 \\
c+2 & = \pm 2 \sqrt{2} \\
c & =-2 \pm 2 \sqrt{2}=2(-1 \pm \sqrt{2})
\end{aligned}
$$

Now $2(-1-\sqrt{2}) \notin(0,2)$. Therefore, $c=2(\sqrt{2}-1)$.

Problem 2: Find $\lim _{n \rightarrow \infty}\left(\cos \frac{1}{n}\right)^{2 n^{2}}$.

$$
\text { Let } \begin{aligned}
& y=\left(\cos \frac{1}{n}\right)^{2 n^{2}} . \text { Then } \ln y=\ln \left(\cos \frac{1}{n}\right)^{2 n^{2}}=2 n^{2} \ln \left(\cos \frac{1}{n}\right) . \text { Now } \\
& \qquad \begin{aligned}
\lim _{n \rightarrow \infty} 2 n^{2} \ln \left(\cos \frac{1}{n}\right) & =\lim _{n \rightarrow \infty} \frac{2 \ln (\cos 1 / n)}{1 / n^{2}} \\
& \stackrel{\text { L.H. }}{=} \lim _{n \rightarrow \infty} \frac{2 \frac{-\sin (1 / n)}{\cos (1 / n)} \cdot \frac{-1}{n^{2}}}{-2 / n^{3}} \\
& =\lim _{n \rightarrow \infty} \frac{-\tan (1 / n)}{1 / n} \\
& \stackrel{\text { L.H. }}{=} \lim _{n \rightarrow \infty} \frac{-\sec ^{2}(1 / n) \cdot-1 / n^{2}}{-1 / n^{2}} \\
& =\lim _{n \rightarrow \infty}-\sec ^{2}(1 / n)=-1
\end{aligned}
\end{aligned}
$$

But then $\ln y=-1$ so that $y=e^{-1}=\frac{1}{e}$. Therefore, $\lim _{n \rightarrow \infty}\left(\cos \frac{1}{n}\right)^{2 n^{2}}=\frac{1}{e}$.

Problem 3: Assuming a classical model of the atom, Niels Bohr was able to show that the energy of a hydrogen atom with separation r between the proton and the election is given by

$$
E(r)=\frac{\hbar^{2}}{2 m_{e} r^{2}}-\frac{e^{2}}{4 \pi \epsilon_{0} r}
$$

where \hbar is the reduced Planck's constant (Dirac constant), m_{e} is the mass of the election, e is the charge of an electron, and ϵ_{0} is permittivity of free space. The Bohr radius for the hydrogen atom, denoted $r_{\text {Bohr }}$, is the radius at which $E(r)$ is minimal and it is approximately the expected distance between the proton and the electron in the ground state. Show that

$$
r_{\mathrm{Bohr}}=\frac{4 \pi \epsilon_{0} \hbar^{2}}{m_{e} e^{2}}
$$

$$
\begin{aligned}
& E(r)=\frac{\hbar^{2}}{2 m_{e} r^{2}}-\frac{e^{2}}{4 \pi \epsilon_{0} r} \\
& E^{\prime}(r)=\frac{-2 \hbar^{2}}{2 m_{e} r^{3}}+\frac{e^{2}}{4 \pi \epsilon_{0} r^{2}}=\frac{e^{2}}{4 \pi \epsilon_{0} r^{2}}-\frac{\hbar^{2}}{m_{e} r^{3}}
\end{aligned}
$$

If r is minimum value, then $E^{\prime}(r)=0$. But then

$$
\begin{aligned}
\frac{e^{2}}{4 \pi \epsilon_{0} r^{2}}-\frac{\hbar^{2}}{m_{e} r^{3}} & =0 \\
\frac{e^{2}}{4 \pi \epsilon_{0} r^{2}} & =\frac{\hbar^{2}}{m_{e} r^{3}} \\
\frac{e^{2} r}{4 \pi \epsilon_{0}} & =\frac{\hbar^{2}}{m_{e}} \\
r & =\frac{4 \pi \epsilon_{0} \hbar^{2}}{m_{e} e^{2}}
\end{aligned}
$$

We check that this is a minimum using the First Derivative Test:

Therefore, $r_{B o h r}=\frac{4 \pi \epsilon_{0} \hbar^{2}}{m_{e} e^{2}}$.

