Problem 1: The plot of a function $f(x)$ is given below. Use the plot to evaluate the following limits:

(a) $\lim _{x \rightarrow 2^{+}} f(x)=-\infty$
(f) $\lim _{x \rightarrow-3} f(x)=D N E$
(b) $\lim _{x \rightarrow 2^{-}} f(x)=\infty$
(g) $\lim _{x \rightarrow \infty} f(x)==1$
(c) $\lim _{x \rightarrow-3^{-}} f(x)=\infty$
(h) $\lim _{x \rightarrow-\infty} f(x)=1$
(d) $\lim _{x \rightarrow-3^{+}} f(x)=-\infty$
(i) What are the roots of $f(x)$? $x=1,3$
(e) $\lim _{x \rightarrow 2} f(x)=D N E$

Problem 2: Evaluate the following limits. You do not need to justify your answer.
(a) $\lim _{x \rightarrow \infty} \frac{2 x^{2}-5 x+7}{7 x^{3}-2 x^{2}+6}=0$
(e) $\lim _{x \rightarrow \infty} \frac{\sin x^{2}}{5^{x}}=0$
(b) $\lim _{x \rightarrow \infty} \frac{2 x^{5}+4 x^{2}+7}{3 x^{5}-4 x^{3}+4 x+1}=2 / 3$
(f) $\lim _{x \rightarrow \infty} \frac{x^{2}+7 x+3}{\sqrt{x-3}}=\infty$
(c) $\lim _{x \rightarrow \infty} \frac{2^{x}}{x^{3}+2 x+1}=\infty$
(g) $\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt{x}}=0$
(d) $\lim _{x \rightarrow \infty} \frac{5 \ln x}{x^{2}+2 x+3}=0$
(h) $\lim _{x \rightarrow \infty} \frac{x^{3}+5 x+9}{\sqrt{x^{10}-4 x+6}}=0$

Problem 3:

$$
f(x)=\frac{(x+3)(x-2)(x+6)}{(x-2)(x+1)(x-3)}
$$

(a) What are the x-intercepts for $f(x)$?

$$
x=-3,-6
$$

(b) What is the y-intercept for $f(x)$?

$$
y=f(0)=\frac{18}{-3}=-6
$$

(c) Where is $f(x)$ continuous?

Everywhere on \mathbb{R} except for $x=2,-1,3$
(d) What are vertical asymptotes for $f(x)$?

$$
x=-1,3
$$

(e) What are the horizontal asymptotes for $f(x)$?

$$
y=\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow \infty} f(x)=1
$$

(f) Does $f(x)$ have any removable discontinuities? If so, what is the point?

$$
f(x)=\frac{(x+3)(x+6)}{(x+1)(x-3)} ; \quad f(2)=\frac{-40}{3}
$$

Then $f(x)$ has a removable discontinuity (or hole) at (2,-40/3).
Problem 4: Evaluate the following limit. Be sure to justify your answer completely: $\lim _{x \rightarrow-\infty} \frac{x^{3}+2 x+3}{x^{2}+6 x+1}$

$$
\lim _{x \rightarrow-\infty} \frac{x^{3}+2 x+3}{x^{2}+6 x+1} \frac{1 / x^{2}}{1 / x^{2}}=\lim _{x \rightarrow-\infty} \frac{x+\frac{2}{x}+\frac{3}{x^{2}}}{1+\frac{6}{x}+\frac{1}{x^{2}}}=-\infty
$$

