Name:Caleb McWhorter — SolutionsMAT 295

Quiz 4 Fall 2016

Problem 1: Determine the derivative of the following:

(a)
$$\frac{d}{dx} \arctan x = \frac{1}{1+x^2}$$
 (g) $\frac{d}{dx}e^x = e^x$

(b)
$$\frac{d}{dx} \left(\frac{1}{\sqrt[7]{x^3}} \right) = \frac{-3}{7\sqrt[4]{x^{10}}}$$
 (h) $\frac{d}{dx} \cot x = -\csc^2 x$

(c)
$$\frac{d}{dx}\tan x = \sec^2 x$$
 (i) $\frac{d}{dx}\ln x = \frac{1}{x}$

(d)
$$\frac{d}{dx}\frac{1}{5^x} = \frac{-\ln 5}{5^x}$$
 (j) $\frac{d}{dx}(2x^3 - x^2 + 4x - 7) = 6x^2 - 2x + 4x$

(e)
$$\frac{d}{dx} \sec x = \sec x \tan x$$
 (k) $\frac{d}{dx} \cos^{-1} x = \frac{-1}{\sqrt{1-x^2}}$

(f)
$$\frac{d}{dx}\log_7 x = \frac{1}{x\ln7}$$

Problem 2: Use a tangent line to $f(x) = \sqrt{x}$ to approximate $\sqrt{26}$. Check how "close" your answer is to the actual value by computing its square. Determine whether your answer is an overestimation or an underestimation two ways: first by using the square of your approximation and second by graphing f(x) and its tangent line.

Solution. The equation for a tangent line for f(x) at x = a is...

$$l_a(x) = f(a) + f'(a)(x-a)$$

We know $\sqrt{25} = 5$, so we will use the tangent line at x = 25 for $f(x) = \sqrt{x}$ to approximate $\sqrt{26}$.

$$f(x) = \sqrt{x} \Rightarrow f(5) = \sqrt{25} = 5$$
$$f'(x) = \frac{1}{2\sqrt{x}} \Rightarrow f'(25) = \frac{1}{2\sqrt{25}} = \frac{1}{10}$$

We should have $\sqrt{26} \approx l_{25}(26) = 5 + \frac{1}{10}(26 - 25) = 5 + \frac{1}{10} = 5.10$. Observe that $(5.10)^2 = (5 + 0.10)(5 + 0.10) = 25 + 0.5 + 0.5 + 0.01 = 26.01$. So our approximation is 'close,' Because $5.10^2 > 26$, we have over-approximated. We can also see this from either the derivative (why?) and the graph of f(x)

