Problem 1: Determine the derivative of the following:
(a) $\frac{d}{d x} \arctan x=\frac{1}{1+x^{2}}$
(g) $\frac{d}{d x} e^{x}=e^{x}$
(b) $\frac{d}{d x}\left(\frac{1}{\sqrt[7]{x^{3}}}\right)=\frac{-3}{7 \sqrt[4]{x^{10}}}$
(h) $\frac{d}{d x} \cot x=-\csc ^{2} x$
(c) $\frac{d}{d x} \tan x=\sec ^{2} x$
(i) $\frac{d}{d x} \ln x=\frac{1}{x}$
(d) $\frac{d}{d x} \frac{1}{5^{x}}=\frac{-\ln 5}{5^{x}}$
(j) $\frac{d}{d x}\left(2 x^{3}-x^{2}+4 x-7\right)=6 x^{2}-2 x+4$
(e) $\frac{d}{d x} \sec x=\sec x \tan x$
(k) $\frac{d}{d x} \cos ^{-1} x=\frac{-1}{\sqrt{1-x^{2}}}$
(f) $\frac{d}{d x} \log _{7} x=\frac{1}{x \ln 7}$

Problem 2: Use a tangent line to $f(x)=\sqrt{x}$ to approximate $\sqrt{26}$. Check how "close" your answer is to the actual value by computing its square. Determine whether your answer is an overestimation or an underestimation two ways: first by using the square of your approximation and second by graphing $f(x)$ and its tangent line.

Solution. The equation for a tangent line for $f(x)$ at $x=a$ is...

$$
l_{a}(x)=f(a)+f^{\prime}(a)(x-a)
$$

We know $\sqrt{25}=5$, so we will use the tangent line at $x=25$ for $f(x)=\sqrt{x}$ to approximate $\sqrt{26}$.

$$
\begin{aligned}
f(x) & =\sqrt{x} \Rightarrow f(5)=\sqrt{25}=5 \\
f^{\prime}(x) & =\frac{1}{2 \sqrt{x}} \Rightarrow f^{\prime}(25)=\frac{1}{2 \sqrt{25}}=\frac{1}{10}
\end{aligned}
$$

We should have $\sqrt{26} \approx l_{25}(26)=5+\frac{1}{10}(26-25)=5+\frac{1}{10}=5.10$. Observe that $(5.10)^{2}=(5+0.10)(5+$ $0.10)=25+0.5+0.5+0.01=26.01$. So our approximation is 'close,' Because $5.10^{2}>26$, we have over-approximated. We can also see this from either the derivative (why?) and the graph of $f(x)$

