Problem: Consider the elliptic curve ${ }^{1} y^{2}=x^{3}-43 x+166$, which is plotted below.
(a) Use implicit differentiation to find the equation of the tangent line to the rational point $(3,8)$ on the elliptic curve.
(b) Sketch the tangent line from (a) on the given plot.
(c) Use the plot from (b) to determine if the tangent line would give a good approximation for the y-coordinate of the curve at $x=2$.

$$
\begin{aligned}
y^{2} & =x^{3}-43 x+166 \\
\frac{d}{d x} y^{2} & =\frac{d}{d x}\left(x^{3}-43 x+166\right) \\
2 y \cdot y^{\prime} & =3 x^{2}-43 \\
\frac{d y}{d x} & =\frac{3 x^{2}-43}{2 y}
\end{aligned}
$$

But then $\left.\frac{3 x^{2}-43}{2 y}\right|_{(3,8)}=\frac{3\left(3^{2}\right)-43}{2(8)}=-1$. But then the tangent line is $y=8+(-1)(x-3)$ so that $y=11-x$. Notice from the plot, we do not expect the tangent line to approximate the value at $x=2$ very well. It is even worse for $x=1,0$, etc. Note that the error of the approximation at $x=2$ is 4% but at $x=1$ it is 10%.

[^0]Problem 1: A "Caution: Manatee Area" warning light is located on a small buoy 2 km away from a beach. The light located on the buoy rotates in place on the buoy at a rate of 2 times per minute. How fast is the light racing across the shoreline when the light is facing toward a point on the shore 1 km away from spot on the shore closest to the warning light?

Using the Pythagorean Theorem, we have $a^{2}+b^{2}=c^{2}$. But then $c^{2}=1^{2}+2^{2}=5$ so that $c=\sqrt{5}$. The light rotates 2 times per minute so that it rotates at a rate of...

$$
\underbrace{2}_{\text {\# rotations }} \cdot \frac{2 \pi}{\frac{2 \pi}{\mathrm{rad} / \mathrm{min}}}=4 \pi \mathrm{rad} / \mathrm{min}
$$

Now $\tan \theta=\frac{x}{2}$ so that $x=2 \tan \theta$. But then

$$
\underbrace{\frac{d x}{d t}}_{\text {horz velocity }}=2 \sec ^{2} \theta \cdot \underbrace{\frac{d \theta}{d t}}_{\text {angular velocity }}
$$

We know that $\frac{d \theta}{d t}=4 \pi$. Using right triangle trig, we know also that $\sec \theta=\frac{\sqrt{5}}{2}$. But then

$$
\begin{array}{r}
\frac{d x}{d t}=2 \sec ^{2} \theta \cdot \frac{d \theta}{d t} \\
x^{\prime}=2\left(\frac{\sqrt{5}}{2}\right)^{2} \cdot 4 \pi \\
x^{\prime}=2 \cdot \frac{5}{2^{2}} \cdot 4 \pi \\
x^{\prime}=10 \pi \mathrm{~km} / \mathrm{min}
\end{array}
$$

We can also check dimensions:

$$
x^{\prime}=\underbrace{2}_{m} \cdot \underbrace{\sec ^{2} \theta}_{\text {unitless }} \cdot \underbrace{\frac{d \theta}{d t}}_{1 / m i n}
$$

[^0]: ${ }^{1}$ Elliptic curves are curves (of degree 2) which are of the form $y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$ and form an essential part of modern day cryptography and Mathematics generally. Faltings was awarded the Fields Medal-the highest possible honor in Mathematics-for proving there are only finitely many rational points on elliptic curves.

