Problem 1: The McGraw Clock Tower at Cornell University has minute hand and hour hands roughly 5 ft and 3 ft in length, respectively. If a student walked by Olin Library at 12:19am and looked up at the clock, what would they measure the rate of change of the distance between the tips of the hands of the clock to be?

Problem 2: In Newtonian Physics for particles, $F=m a$ where F is the force, m is the mass, and a is the acceleration of the particle. But $F=m a$ does not always hold. Generally, $F=\frac{d p}{d t}$, where $p=m v$ is the momentum of the particle at time t.
(a) Suppose that a particles mass is essentially constant and that its velocity is not "too large." Use $F=\frac{d p}{d t}$ and $p=m v$ to show that $F=m a$.

For particles moving at a high velocity, $F=m a$ is no longer valid. In Special Relativity, the momentum of a particle is given by

$$
p=\gamma m v=\frac{m v}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

where m is the (rest) mass of the particle and c is the speed of light in a vacuum.
(b) What happens to the momentum of a particle as v approaches c ? Can an object with mass travel at the speed of light? ${ }^{1}$
(c) Given $F=\frac{d p}{d t}$ still holds in Special Relativity, show that the relativistic force for a particle with rest mass m moving at velocity v is given by

$$
F=\frac{m a}{\left(1-\frac{v^{2}}{c^{2}}\right)^{3 / 2}}
$$

Use this to show why it is impossible to accelerate an object with nonzero mass to the speed of light.

[^0]
[^0]: ${ }^{1}$ Note: sometimes the particle is said to have mass $M=\gamma m$, called the relativistic mass. Then the rest mass is when $v=0$ and $p=M \nu$. However, this is convention; Mass is an intrinsic, invariant quantity that does not depend on velocity.]

