Math 397 Spring 2016 Exam I

Name: _____ (Please Print.)

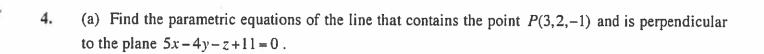
Do all your work on this exam. Correct answers should be supported by

your calculations and reasoning where appropriate.

1.	(a) Find all unit vectors parallel to $\overline{v} = 0$	$\langle 1, -3, \sqrt{2} \rangle$.
----	--	-------------------------------------

Problem	Points	Score
1	8	
2	8	
3	10	
4	8	
5	10	
6	10	
Total	60	

(b) Which, if any, of the following vectors is orthogonal to $\overline{v} = \langle 2, -3, \sqrt{2} \rangle$? (Show your computations.) $\overline{a} = \langle 3, 2, 5\sqrt{2} \rangle$, $\overline{b} = \langle -6, 2, 6\sqrt{2} \rangle$


- (c) Assume $\overline{u} \cdot \overline{v} = 8$ and $\overline{u} \cdot \overline{w} = -5$ find
 - (i) $\overline{u} \cdot (3\overline{v} + 2\overline{w})$
 - (ii) For what value of k is $\overline{v} + k\overline{w}$ orthogonal to \overline{u} ?

2. (a) Find the point of intersection of the following pair of lines.

$$x = 1 + t$$
 $x = 4 - s$
 L_1 : $y = 2 + 2t$ $-\infty < t < \infty$ and L_2 : $y = 2 + s$ $-\infty < s < \infty$
 $z = 4 - t$ $z = 2s - 1$

(b) Find the angle between the lines in part (a).

3. (a) Find the area of the triangle in three-space with vertices	P(2,3,-1), $Q(4,5,2)$ and $R(6,2,1)$	
		a f	
4.			
(b)) Find the equation of the plane through the three points in part (a)		

(b) Find the perpendicular distance between the point P and the plane in part (a).

- Consider the two parallel planes x+2y+3z=12 containing the point P(2,2,2) and x+2y+3z=14 containing the point Q(5,3,1).
 - (i) Compute and <u>simplify</u> the vector projection of \overrightarrow{PQ} onto the normal vector $\overline{i} + 2\overline{j} + 3\overline{k} = \langle 1, 2, 3 \rangle$.

(ii) Describe geometrically what the length of the vector you computed in part (a) gives. [A diagram may help you decide.]

6. (a) Find the center and radius of the sphere with equation $x^2 - 2x + y^2 + 6y + z^2 + 4z = 2$.

(b) Give the equation of the intersection of the sphere in part (a) with the xy-plane.