TEST 1

Your Name (please PRINT): \qquad
Student ID Number: \qquad

INSTRUCTIONS

- Fill in the above items.
- There is a total of 5 problems, for a maximum possible total value of 100 points. Make sure you have all 6 test pages (this cover page +5 test pages). You are responsible to check that your test booklet has all 6 pages. Alert a proctor if your copy is missing any pages.
- Show all your work. Only minimal credit will be given for answers without supporting work.
- Write your answer in the box at the bottom of pages 2-6.
- Use the back of test pages if additional space is needed, and for scratch paper.
- No calculators or other electronic devices; no outside notes; no outside tables are allowed on this exam. Any use of calculators or electronic devices, or outside notes is a violation of the Academic Integrity Policy.

Do not write below this line

Pb. \#	Max Points	Your Score
1	24	
2	14	
3	24	
4	20	
5	18	
Total	100	

1. (24 pts) Consider the two vectors

$$
\mathbf{a}=\langle 1,-1,2\rangle, \quad \text { and } \quad \mathbf{b}=\langle-1,-1,4\rangle .
$$

(a) Find the angle between \mathbf{a} and \mathbf{b}.
(b) Find a vector that is perpendicular to both \mathbf{a} and \mathbf{b}.
(c) Find the area of the parallelogram determined by \mathbf{a} and \mathbf{b}.

Answer for part (a):

Answer for part (b):

Answer for part (c):
2. (14 pts) Find the scalar equation of the plane that goes through the point ($-1,2,-2$) and is parallel to the plane with equation $2 x-y+3 z=\sqrt{6}$.

Answer:

3. (24 pts) The points P_{1}, P_{2}, P_{3} and P_{4} are given by the x, y, z coordinates $(1,0,0),(0,0,1),(0,2,0)$ and $(2,0,2)$ respectively.
(a) Write parametric equations of the line L_{1} connecting P_{1} and P_{2}.
(b) Write parametric equations of the line L_{2} connecting P_{3} and P_{4}.
(c) Determine whether L_{1} and L_{2} intersect, are parallel or skew and explain why.

Answer for part (a):
Answer for part (b):
Answer for part (c):

4. (20 pts) A curve is given by the following parametric equation:

$$
\overrightarrow{\mathbf{r}}(t)=2 \cos (2 t) \hat{\mathbf{i}}+2 \sin (2 t) \hat{\mathbf{j}}+3 t \hat{\mathbf{k}}
$$

(a) Find its unit tangent vector $\hat{\mathbf{T}}(t)$.
(b) Find its principal unit normal vector $\hat{\mathbf{N}}(t)$.

Answer for part (a):

Answer for part (b):
5. (18 pts) Match the following functions with the given graphs and explain why.
(1) $x^{2}+\frac{y^{2}}{9}+\frac{z^{2}}{16}=1$
(2) $z=4 x^{2}+9 y^{2}$
(3) $x=z^{2}+1$

