MAT 397 CAL III Section M007 Fall 2015

TEST 1

INSTRUCTIONS

- Fill in the above items.
- There is a total of 5 problems, for a maximum possible total value of 100 points. Make sure you have all 6 test pages (this cover page + 5 test pages). You are responsible to check that your test booklet has all 6 pages. Alert a proctor if your copy is missing any pages.
- Show all your work. Only minimal credit will be given for answers without supporting work.
- Write your answer in the box at the bottom of pages 2-6.
- Use the back of test pages if additional space is needed, and for scratch paper.
- No calculators or other electronic devices; no outside notes; no outside tables are allowed on this exam. Any use of calculators or electronic devices, or outside notes is a violation of the Academic Integrity Policy.

Pb. #	Max Points	Your Score
1	24	
2	14	
3	24	
4	20	
5	18	
Total	100	

Do not write below this line

1. (24 pts) Consider the two vectors

$$\mathbf{a} = \langle 1, -1, 2 \rangle$$
, and $\mathbf{b} = \langle -1, -1, 4 \rangle$.

(a) Find the **angle** between **a** and **b**.

(b) Find a vector that is **perpendicular** to both **a** and **b**.

(c) Find the ${\bf area}$ of the parallelogram determined by ${\bf a}$ and ${\bf b}.$

Answer for part (a):

Answer for part (b):

Answer for part (c):

2. (14 pts) Find the scalar equation of the plane that goes through the point (-1, 2, -2) and is parallel to the plane with equation $2x - y + 3z = \sqrt{6}$.

Answer:

(a) Write parametric equations of the line L_1 connecting P_1 and P_2 .

(b) Write parametric equations of the line L_2 connecting P_3 and P_4 .

(c) Determine whether L_1 and L_2 intersect, are parallel or skew and explain why.

 Answer for part (a):

 Answer for part (b):

 Answer for part (c):

4. (20 pts) A curve is given by the following parametric equation:

$$\vec{\mathbf{r}}(t) = 2\cos(2t)\hat{\mathbf{i}} + 2\sin(2t)\hat{\mathbf{j}} + 3t\hat{\mathbf{k}}$$

(a) Find its unit tangent vector $\hat{\mathbf{T}}(t)$.

(b) Find its principal unit normal vector $\hat{\mathbf{N}}(t)$.

Answer for part (a):

Answer for part (b):

5. (18 pts) Match the following functions with the given graphs and explain why.

(1)
$$x^2 + \frac{y^2}{9} + \frac{z^2}{16} = 1$$
 (2) $z = 4x^2 + 9y^2$ (3) $x = z^2 + 1$

