MAT 397 CAL III Section M005 Spring 2016

TEST 2

Your Name (please PRINT): \qquad
Student ID Number: \qquad

INSTRUCTIONS

- Fill in the above items.
- There is a total of 5 problems, for a maximum possible total value of 100 points. Make sure you have all 6 test pages (this cover page +5 test pages). You are responsible to check that your test booklet has all 6 pages. Alert a proctor if your copy is missing any pages.
- Show all your work. Only minimal credit will be given for answers without supporting work.
- Write your answer in the box at the bottom of pages 2-6.
- Use the back of test pages if additional space is needed, and for scratch paper.
- No calculators or other electronic devices; no outside notes; no outside tables are allowed on this exam. Any use of calculators or electronic devices, or outside notes is a violation of the Academic Integrity Policy.

Do not write below this line

Pb. \#	Max Points	Your Score
1	20	
2	18	
3	18	
4	24	
5	20	
Total	100	

1. (20 pts) Let $f(x, y)=x^{2} y^{2}-x$.
(a) Find ∇f at $(2,1)$
(b) Use a linear approximation to find the approximate value of $f(1.9,1.1)$.

Answer for part (a):

Answer for part (b):
2. (18 pts) Find the equation of the tangent plane to the given surface at the specified point

$$
x^{2}+z^{2}+y z=e^{x y}, \quad(1,0,2)
$$

Answer:

3. (18 pts) Let $w=u e^{v}$, where $u=x y$ and $v=x / y$. Using the chain rule, compute $\frac{\partial w}{\partial x}$ and $\frac{\partial w}{\partial y}$ and express them in terms of only x and y.
4. (24 pts) Consider the function

$$
f(x, y)=x^{3}-x y^{2}-4 x^{2}+3 x+x^{2} y
$$

(a) Find the maximum value of the directional derivative $D_{\mathbf{u}} f$ at the point $(1,1)$ as \mathbf{u} varies.
(b) Find the direction \mathbf{u} in which the maximum occurs and $|\mathbf{u}|=1$.
(c) Find the direction(s) \mathbf{u} for which $D_{\mathbf{u}} f(1,1)=0$ and $|\mathbf{u}|=1$.

Answer for part (a):
Answer for part (b):
Answer for part (c):

5. (20 pts) We want to construct a rectangular box. The material used to build the top and bottom cost $\$ 10 / \mathrm{ft}^{2}$ and the material used to build the sides cost $\$ 5 / \mathrm{ft}^{2}$. If the box must have a volume of $16 \mathrm{ft}^{3}$, determine the dimensions that will minimize the cost to build the box.

Answer:

