This exam has 6 problems on 6 pages. No notes, calculators, or electronic devices of any kind are allowed. **Show all your work!**

Name: _____

1. (15 points) Evaluate the double integral $\iint_D 2xdA$ where *D* is the region in \mathbb{R}^2 given by the equations $0 \le x \le 1$ and $2x^2 - x \le y \le 2x$.

2. (15 points) Suppose a solid object occupies the region

$$E = \{ (x, y, z) \mid 0 \le x \le \pi/2, \ 0 \le y \le x, \ 0 \le y + z \le 2 \}.$$

Find the total mass of the object if the mass density at (x, y, z) is given by $\rho(x, y, z) = 3 + \cos y$.

3. (20 points) Use cylindrical coordinates to compute the volume $V = \iiint_E 1 dV$ of the region *E* that lies above *xy*-plane, inside the cylinder $x^2 + y^2 \le 1$, and underneath the surface $z = 2e^{x^2 + y^2} + 4$.

4. (15 points) Let *E* be the region in \mathbb{R}^3 which lies above the *xy*-plane and between the spheres of radius 4 and 5 with centers at the origin. Use spherical coordinates to express the triple integral

 $\iiint\limits_E zdV$

as an iterated integral. Do <u>not</u> evaluate the integral!

- 5. (20 points) Let $R = \{(x, y) | 0 \le x/2 + y \le 1, 0 \le x + 3y \le 1\}$.
 - a) Express x and y in terms of the variables u = x/2 + y and v = x + 3y.

b) Find the Jacobian $\frac{\partial(x,y)}{\partial(u,v)}$.

c) Use parts a) and b) to evaluate the double integral $\iint_R y dA$.

6. (15 points) A lamina occupies the region

$$D = \{ (x, y) \mid 1 \le x \le 2, \ 0 \le y \le 6x \}$$

in the xy-plane. Find the center of mass of the lamina if the mass density is constant equal to 1.