This exam has 6 problems on 6 pages. No notes, calculators, or electronic devices of any kind are allowed. Show all your work!

Name: \qquad

1. (15 points) Evaluate the double integral $\iint_{D} 2 x d A$ where D is the region in \mathbb{R}^{2} given by the equations $0 \leq x \leq 1$ and $2 x^{2}-x \leq y \leq 2 x$.
2. (15 points) Suppose a solid object occupies the region

$$
E=\{(x, y, z) \mid 0 \leq x \leq \pi / 2,0 \leq y \leq x, 0 \leq y+z \leq 2\} .
$$

Find the total mass of the object if the mass density at (x, y, z) is given by $\rho(x, y, z)=3+\cos y$.
3. (20 points) Use cylindrical coordinates to compute the volume $V=\iiint_{E} 1 d V$ of the region E that lies above $x y$-plane, inside the cylinder $x^{2}+y^{2} \leq 1$, and underneath the surface $z=2 e^{x^{2}+y^{2}}+4$.
4. (15 points) Let E be the region in \mathbb{R}^{3} which lies above the $x y$-plane and between the spheres of radius 4 and 5 with centers at the origin. Use spherical coordinates to express the triple integral

$$
\iiint_{E} z d V
$$

as an iterated integral. Do not evaluate the integral!
5. (20 points) Let $R=\{(x, y) \mid 0 \leq x / 2+y \leq 1,0 \leq x+3 y \leq 1\}$.
a) Express x and y in terms of the variables $u=x / 2+y$ and $v=x+3 y$.
b) Find the Jacobian $\frac{\partial(x, y)}{\partial(u, v)}$.
c) Use parts a) and b) to evaluate the double integral $\iint_{R} y d A$.
6. (15 points) A lamina occupies the region

$$
D=\{(x, y) \mid 1 \leq x \leq 2,0 \leq y \leq 6 x\}
$$

in the $x y$-plane. Find the center of mass of the lamina if the mass density is constant equal to 1 .

