Name:

aleb Mc Whorks

Problem 1 (10 points) Evaluate $\int_C xds$ where C is given by $\mathbf{r}(t) = \langle 4t + 1, 3t \rangle$, $0 \le t \le 1$.

(olutions

$$\Gamma(t) = \langle 4t+1, 3t \rangle$$

$$\Gamma'(t) = \langle 4, 3 \rangle$$

$$|\Gamma'(t)| = \sqrt{4^2 + 9^2} = \sqrt{10 + 9} = 5$$

$$\times$$

$$\int_{C} x \, ds = \int_{0}^{1} (4t+1) \cdot 5 \, dt$$

$$= 5 \int_{0}^{1} 4t+1 \, dt$$

$$= 5 \left[2t^{2} + t \right]_{0}^{1}$$

$$= 5 \left(2 + 1 \right)$$

$$= 15$$

Problem 2 (10 points) Evaluate $\int_C x^2 dy$ where C is the arc of the curve $x = y^3$ from (0,0) to (1,1).

$$\int_{c} X^{2} dy = \int_{0}^{1} (t^{3})^{2} dt$$

$$= \int_{0}^{1} t^{6} dt$$

$$= \int_{0}^{1} t^{6} dt$$

$$= \int_{0}^{1} |t^{7}|_{0}^{1}$$

$$= ||7|$$