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Write your name on the appropriate line on the exam cover sheet. This exam
contains 10 pages (including this cover page) and 8 questions. Check that you

have every page of the exam. Answer the questions in the spaces provided on the
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being sure to indicate the problem number.
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1. (5 points) Find the limits of the following sequences:

an =
3n2 − 5n+ 7

5n2 − 2n+ 3

lim
n→∞

an = lim
n→∞

3n2 − 5n+ 7

5n2 − 2n+ 3
=

3

5

bn = n sin

(
1

n

)

lim
n→∞

bn = lim
n→∞

n sin

(
1

n

)
= lim

n→∞

sin

(
1

n

)
1

n

= 1

cn =
n
√
2n

lim
n→∞

cn = lim
n→∞

n
√
2n = lim

n→∞
21/n · n1/n = 1 · 1 = 1

dn =

(
1 +

7

5n

)2n/3

lim
n→∞

dn = lim
n→∞

(
1 +

7

5n

)2n/3

= lim
n→∞

(
1 +

1

5n/7

)2n/3

= lim
n→∞

[(
1 +

1

5n/7

)5n/7
] 7

5
·
2

3

= e
7
5
· 2
3 = e14/15 =

15
√
e14
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2. (5 points) Determine if the following series converge or diverge. Justify your answer.

∞∑
n=1

cos

(
1

n

)

lim
n→∞

cos

(
1

n

)
= cos 0 = 1 6= 0

Therefore,
∞∑
n=1

cos

(
1

n

)
diverges by the Divergence Test.

∞∑
n=1

sin

(
1

n

)

We know that sinx ≈ x− x
3

3!
+
x5

5!
−· · · so that sin

(
1

n

)
≈ 1

n
− (1/n)3

3!
+
(1/n)5

5!
−· · · . For

‘large’ n, sin(1/n) is positive. Given that sin(1/n) should ‘behave’ like 1/n and is positive
for large n, we use the Limit Comparison Test with 1/n.

lim
n→∞

sin(1/n)

1/n
= 1 6= 0

Because
∑ 1

n
diverges by the p-test (it is the Harmonic series),

∑
sin(1/n) converges by

the Limit Comparison Test.
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3. (5 points) Determine if the following series converges or diverges. If the series con-

verges, find the sum. If the series diverges, prove it.
[
Hint:

1

n2 + 3n+ 2
=

1

n+ 1
− 1

n+ 2

]
∞∑
n=0

1

n2 + 3n+ 2

∞∑
n=0

1

n2 + 3n+ 2
=
∞∑
n=0

(
1

n+ 1
− 1

n+ 2

)
We look at the partial sums:

S1 =
1

1
− 1

2

S2 =

(
1

1
−

�
�
�1

2

)
+

(
�
�
�1

2
− 1

3

)
= 1− 1

3

S3 =

(
1

1
−

�
�
�1

2

)
+

(
�
�
�1

2
−

�
�
�1

3

)
+

(
�
�
�1

3
− 1

4

)
= 1− 1

4
...

Sm =

(
1

1
−

�
�
�1

2

)
+

(
�
�
�1

2
−

�
�
�1

3

)
+

(
�
�
�1

3
−

�
�
�1

4

)
+ · · ·

(
�
�
�1

m
− 1

m+ 1

)
= 1− 1

m+ 1

Then
∞∑
n=0

1

n2 + 3n+ 2
=
∞∑
n=0

(
1

n+ 1
− 1

n+ 2

)
= lim

m→∞
Sm = lim

m→∞

(
1− 1

m+ 1

)
= 1− 0 = 1

Therefore,
∞∑
n=0

1

n2 + 3n+ 2
= 1.
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4. (5 points) Determine if the following series converges or diverges. If the series con-
verges, find the sum. If the series diverges, prove it.

∞∑
n=0

3n−2

en+3

∞∑
n=0

3n−2

en+3
=
∞∑
n=0

3n3−2

ene3
=
∞∑
n=0

1

9e3

(
3

e

)n

This series is geometric with r = 3/e. Now e ≈ 2.718281828 · · · so that 3/e > 1. But then
|r| = |3/e| > 1 so that the series diverges by the Geometric Series Test.

∞∑
n=1

πn − 2n+1

32n

∞∑
n=0

πn − 2n+1

32n
=
∞∑
n=0

πn

32n
− 2n+1

32n
=
∞∑
n=0

πn

32n
−
∞∑
n=0

2n+1

32n

Now
∞∑
n=0

πn

32n
=

∞∑
n=0

( π
32

)
=

∞∑
n=0

(π
9

)n
. This series is geometric with r = π/9. But

π ≈ 3.14159 . . . so that π/9 < 1. Therefore by the Geometric Series Test, the series

converges and sums to
π/9

1− π/9
=

π

9− π
.

Now
∞∑
n=0

2n+1

32n
=

∞∑
n=0

2n · 2
32n

=
∞∑
n=0

2

(
2

32

)n

=
∞∑
n=0

2

(
2

9

)n

. This series is geometric with

|r| = |2/9| = 2/9 < 1, so the series converges by the Geometric Series Test. It converges to
2 · 2/9
1− 2/9

=
4/9

7/9
=

4

7
. Therefore,

∞∑
n=1

πn − 2n+1

32n
=

π

9− π
− 4

7
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5. (5 points) Determine if the following series conditionally converges, absolutely con-
verges, or diverges. If the series converges, determine how many terms are needed to
add to approximate the sum to three decimal digits of accuracy. If the series diverges,
prove it.

∞∑
n=1

(−1)n
3
√
n

Note that lim
n→∞

1
3
√
n

= 0 and
{

1
3
√
n

}
is a decreasing sequence. So see this last part, note

that using the fact that 3
√
x is an increasing function

n+ 1 > n
3
√
n+ 1 > 3

√
n

1
3
√
n+ 1

<
1
3
√
n

Alternatively, note that
d

dx

(
1
3
√
x

)
=
−1/3
x4/3

=
−1

3
3
√
x4

< 0. In any case,
{

1
3
√
n

}
meets

the two criterion for the Alternating Series Test. Therefore by the Alternating Series Test,
∞∑
n=1

(−1)n
3
√
n

converges.

The series
∞∑
n=1

1
3
√
n

diverges by the p-test with p = 1/3 ≤ 1. Therefore,
∞∑
n=1

(−1)n
3
√
n

con-

verges conditionally.

To find the sum to 3 decimal places of accuracy, we want
1
3
√
n
<

1

1000
= 0.001. So we

want 3
√
n > 1000 = 103 so that n > (103)3 = 109. So one would need to add the first

109 + 1 = 1, 000, 000, 001 terms.
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6. (5 points) Determine if the following series converge or diverge. Be sure to justify
your answer.

∞∑
n=1

n2 + n

n4 + 5

0 ≤
∞∑
n=1

n2 + n

n4 + 5
≤

∞∑
n=1

n2 + n2

n4
=
∞∑
n=1

2n2

n4
= 2

∞∑
n=1

1

n2

The series
∞∑
n=1

1

n2
converges by the p-test. Therefore,

∑∞
n=1

n2 + n

n4 + 5
converges by the Com-

parison Test.

OR

lim
n→∞

n2 + n

n4 + 5
1

n2

= lim
n→∞

n4 + n3

n4 + 5
= 1 <∞

The series
∞∑
n=1

1

n2
converges by the p-test. Therefore,

∑∞
n=1

n2 + n

n4 + 5
converges by the Limit

Comparison Test.

∞∑
n=1

n+ lnn

n2 + 1

∞∑
n=1

n+ lnn

n2 + 1
≥

∞∑
n=1

n

n2 + n2
=
∞∑
n=1

n

2n2
=

1

2

∞∑
n=1

1

n

The series
∞∑
n=1

1

n
diverges by the p-test. Therefore,

∞∑
n=1

n+ lnn

n2 + 1
diverges by the Comparison

Test.

OR

lim
n→∞

n+ lnn

n2 + 1
1

n

= lim
n→∞

n2 + n lnn

n2 + 1
= 1 <∞

The series
∞∑
n=1

1

n
diverges by the p-test. Therefore,

∞∑
n=1

n+ lnn

n2 + 1
diverges by the Limit

Comparison Test.
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7. (5 points) Determine if the following series converge or diverge. Be sure to be as
specific as possible and justify your answer.

∞∑
n=1

(−5)n

3nnn

lim
n→∞

(∣∣∣∣(−5)n3nnn

∣∣∣∣)1/n

= lim
n→∞

(
5n

3nnn

)1/n

= lim
n→∞

5

3n
= 0 < 1

Therefore,
∞∑
n=1

(−5)n

3nnn
converges by the Root Test.

OR

lim
n→∞

∣∣∣∣ (−5)n+1

3n+1(n+ 1)n+1
· 3

nnn

(−5)n

∣∣∣∣ = lim
n→∞

5n+1

5n
· 3n

3n+1
· nn

(n+ 1)n+1

= lim
n→∞

5

3
· nn

(n+ 1)n(n+ 10

= lim
n→∞

5

3
·
(

n

n+ 1

)n
1

n+ 1

= lim
n→∞

5

3

(
1 +

1

n

)−n
· 1

n+ 1
=

5

3
· e−1 · 0 = 0 < 1

Therefore,
∞∑
n=1

(−5)n

3nnn
converges by the Ratio Test.

∞∑
n=1

(−1)n2
n
√
n

n!

lim
n→∞

(∣∣∣∣(−1)n2n√nn!

∣∣∣∣)1/n

= lim
n→∞

2n1/(2n)

n
√
n!

= 0 <∞

Therefore,
∞∑
n=1

(−1)n2
n
√
n

n!
converges by the Root Test.

OR

lim
n→∞

∣∣∣∣(−1)n+12n
√
n+ 1

(n+ 1)!
· n!

(−1)n2n
√
n

∣∣∣∣ = lim
n→∞

2n+1

2n
·
√
n+ 1√
n
· n!

(n+ 1)!

= lim
n→∞

2

√
n+ 1

n
· 1

n+ 1
= 2 ·

√
1 · 0 = 0 < 1

Therefore,
∞∑
n=1

(−1)n2
n
√
n

n!
converges by the Ratio Test.
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8. (5 points) Complete the following question by completing each part. Be sure to justify
your answer for each part.

(a) Find the first three nonzero terms of the Maclaurin series for
1

1− x
.

f(x) =
1

1− x

∣∣∣∣
x=0

= 1

f ′(x) =
1

(1− x)2

∣∣∣∣
x=0

= 1

f ′′(x) =
2

(1− x)3

∣∣∣∣
x=0

= 2

1

0!
x0 +

1

1!
x1 +

2

2!
x2 = 1 + x+ x2

(b) Use the previous part to find the Maclaurin series for
1

1− x
.

f (n) =
n!

(1− x)n+1

∣∣∣∣
x=0

= n!

∞∑
n=0

f (n)(0)

n!
(x− 0)n =

∞∑
n=0

n!

n!
xn =

∞∑
n=0

xn

(c) Find the interval and radius of convergence of the power series in (b).

The series is geometric with r = x. Therefore by the Geometric Series Test, the series
converges if and only if |r| = |x| < 1. The interval of convergence is then (−1, 1)

with radius of convergence R =
1− (−1)

2
=

2

2
= 1.

(d) Use the work in the previous parts to find the sum
∞∑
n=0

n

3n
.

∞∑
n=0

n

3n
=
∞∑
n=0

n

(
1

3

)n

=
∞∑
n=0

nxn

if x = 1/3. Now

d

dx

(
1

1− x

)
=

d

dx

∞∑
n=0

xn =
∞∑
n=0

d

dx
xn =

∞∑
n=0

nxn−1

x
d

dx

(
1

1− x

)
= x

∞∑
n=0

nxn−1 =
∞∑
n=0

nxn
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But x
d

dx

(
1

1− x

)
=

x

(1− x)2
. But then

∞∑
n=0

n

(
1

3

)n

=
1/3

(1− 1/3)2
=

1/3

(2/3)2
=

1/3

4/9
=

3

4


