Problem 1: Integral Test

Explain why the Integral Test applies to the following series. Then by integrating (or using Wolfra-mAlpha), show that the series converges/diverges.

- (a) $\sum_{n=1}^{\infty} \frac{\ln n}{n}$
- (b) $\sum_{n=1}^{\infty} \frac{\sqrt{n} 10}{n^2}$
- (c) $\sum_{n=1}^{\infty} \frac{1}{1+n^2}$
- (d) $\sum_{n=2}^{\infty} \frac{1}{n\sqrt{n^2-1}}$

Problem 2: Comparison Test

Use the Comparison Test to determine if the following series converge/diverge:

- (a) $\sum_{n=0}^{\infty} \frac{3^n 7}{6 + 5^n}$
- (b) $\sum_{n=1}^{\infty} \frac{n^2 + n}{n^3 4}$
- (c) $\sum_{n=1}^{\infty} \frac{n + \ln n}{n^3 + 1}$
- (d) $\sum_{n=1}^{\infty} \frac{2n-3}{\sqrt{3n^3-n+1}}$

Problem 3: Limit Comparison Test

Use the Limit Comparison Test to determine if the following series converge/diverge:

- (a) $\sum_{n=1}^{\infty} \frac{n^2 \ln n}{3^n}$
- (b) $\sum_{n=1}^{\infty} \frac{2n+3}{\sqrt{n^5+2}}$

(c)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n^3} + 7}{n^2 + 2n + 3}$$

(d)
$$\sum_{n=1}^{\infty} \sin\left(\frac{1}{n^2}\right)$$

Problem 4: Root Test

Use the Root Test to determine whether the following series converge/diverge:

(a)
$$\sum_{n=1}^{\infty} \frac{3^n}{n^2}$$

(b)
$$\sum_{n=0}^{\infty} \frac{(-1)^n 3^n}{5^n (n^3 + 2)}$$

(c)
$$\sum_{n=1}^{\infty} \frac{n^2}{e^n}$$

(d)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \arctan^n n \ln n}{\sqrt[3]{n^5}}$$

Problem 5: Ratio Test

Use the Ratio Test to determine whether the following series converge/diverge:

(a)
$$\sum_{n=1}^{\infty} \frac{(2n)!}{2^n n!}$$

(b)
$$\sum_{n=2}^{\infty} \frac{(n^2+1)2^n}{n!\sqrt{n-1}}$$

(c)
$$\sum_{n=1}^{\infty} \frac{n^2 + 3n + 2}{3^n + 5}$$

(d)
$$\sum_{n=1}^{\infty} \frac{2^n (2n)!}{n^n}$$

Problem 6: Alternating Series

Use the Alternating Series Test to determine whether the following series converge/diverge. Be sure to check if the converge conditionally or absolutely. If the series converges, find the sum of the first 3 terms (of the alternating series) and explain at most how far this number is from the actual sum.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \ln n}{n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{1+\sqrt{n}}$$

(c)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n} + \sqrt{n+1}}$$

(d)
$$\sum_{n=0}^{\infty} \frac{n^2}{e^n}$$

Problem 7: Mix 'n Match

In each of the following series, determine if the series converges or diverges. For each of the series, use as many possible series tests as possible.

(a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^2 + n + 2}{n^4 - 3n^2 + 2n + 1}$$

(b)
$$\sum_{n=5}^{\infty} \frac{2n}{\sqrt{3n^5 - 2n - 3}}$$

(c)
$$\sum_{n=0}^{\infty} \frac{(-1)^n 5^n}{\pi^n}$$

(d)
$$\sum_{n=1}^{\infty} \frac{n+1}{n^2+2n+3}$$