Radius/Interval of Convergence

Determine the interval and radius of convergence of each of the following power series.

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n+2}$$

(b)
$$\sum_{n=0}^{\infty} x^n \sqrt{n}$$

(c)
$$\sum_{n=0}^{\infty} \frac{x^n 2^n}{n! \sqrt{n+1}}$$

(d)
$$\sum_{n=1}^{\infty} \frac{n^n x^n}{2^n}$$

(e)
$$\sum_{n=1}^{\infty} \frac{x^n}{n 2^n}$$

(f)
$$\sum_{n=2}^{\infty} \frac{x^n}{3^n \ln n}$$

(g)
$$\sum_{n=1}^{\infty} \frac{n^n x^n}{(2n)!}$$

(h)
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Deriving Taylor Series

Derive the Maclaurin series for each of the following functions. Determine the radius and interval of convergence of each.

(a)
$$\frac{1}{1-x}$$

- (b) sin *x*
- (c) $\arctan x$
- (d) e^x
- (e) $\ln(1+x)$

Quickly Deriving Taylor Series

Use a known Taylor series to find the Maclaurin series of the following functions. You may need to differentiate or integrate known series to find them!

(a)
$$\frac{1}{1+2x}$$

(b) $\frac{x^3}{1-3x^2}$
(c) e^{2+x}
(d) $\sqrt{e^x}$
(e) x^2e^{-x}
(f) $\frac{1+x}{1-x}$
(g) $\ln\left(\frac{1-x}{1+x}\right)$
(h) $\frac{1}{(1-x)^2}$
(i) $e^x \sin x$
(j) $2 \sin x \cos x$

Taylor Series and Limits

Use a Taylor series to evaluate the following limits:

(a)
$$\lim_{x \to 0} \frac{\sin x}{x}$$

(b)
$$\lim_{x \to 0} \frac{\cos x - 1}{x}$$

(c)
$$\lim_{x \to 0} \frac{\arctan x - x}{x^3}$$

Harder Taylor Series Limits (Big *O*)

Use a finite Taylor series approximation and its error term (the big O notation) to evaluate the following limits:

(a)
$$\lim_{x \to 0} \frac{\sin x - x + 2x^3}{x^2}$$

(b) $\lim_{x \to 0} \frac{\cos x \sin(x \ln(1+x))}{x^2}$

Taylor Series and Integration

Use a Taylor series to integrate the following:

(a)
$$\int x \cos x^2 dx$$

(b) $\int \arctan x^2 dx$
(c) $\int \frac{e^x - 1}{x} dx$

Taylor Series and Integration Approximation

Use a Taylor series to approximate each of the following integrals. Determine the maximum error in your approximation.

(a)
$$\int_{0}^{1} e^{-x^{2}} dx$$

(b) $\int_{0}^{1} \sin x^{2} dx$
(c) $\int_{0}^{1} \frac{\sin x}{x} dx$

(d)
$$\int_0^1 \frac{3}{x^3 + 27} \, dx$$

Taylor Series and Approximation

Approximate each of the following using a Taylor series. Give the maximum error in your approximation.

- (a) $\ln(1.1)$
- (b) $\cos(1/3)$
- (c) $\arctan(3/2)$
- (d) $\sqrt{101}$
- (e) $\sqrt[4]{e}$

Taylor Series and Infinite Series

Use a Taylor series to evaluate each of the following sums:

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{3^n}{5^n n!}$$

(c) $\sum_{n=0}^{\infty} \frac{(-1)^n}{n!}$
(d) $\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n}}{36^n (2n)!}$
(e) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^n}{n3^n}$
(f) $\sum_{n=0}^{\infty} \frac{n}{2^n}$

Miscellaneous Problems

- (a) Show that *e* is an irrational number using the following argument: Assume that *e* is rational. Let e = p/q. Approximate *e* using its Taylor series to the *q*th term with its error term. Show that this approximation can be written $s_q + \frac{e^w}{(q+1)!}$, where s_q is a sum of *q* numbers and 0 < w < 1. Explain why $q!(e - s_q)$ is an integer. Explain why $q!(e - s_q) < 1$. Explain why this shows that *e* cannot be irrational.
- (b) If f(x) has a power series about x = 0 with radius of convergence R, show that $g(x) = f\left(\frac{x-1}{2}\right)$ has a power series with radius of convergence of 2R about x = 1.
- (c) Use the Taylor series for $\cos x$, $\sin x$ to show that $e^{i\theta} = \cos \theta + i \sin \theta$, where $i^2 = -1$. Then use this to show that $e^{i\pi} + 1 = 0$.