
MAT 296 Problem Set 3 Summer 2016

Radius/Interval of Convergence

Determine the interval and radius of convergence of each of the following power series.
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Deriving Taylor Series

Derive the Maclaurin series for each of the following functions. Determine the radius and interval
of convergence of each.
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(e) ln(1 + x)
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Quickly Deriving Taylor Series

Use a known Taylor series to find the Maclaurin series of the following functions. You may need to
differentiate or integrate known series to find them!
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Taylor Series and Limits

Use a Taylor series to evaluate the following limits:
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Harder Taylor Series Limits (Big O)

Use a finite Taylor series approximation and its error term (the big O notation) to evaluate the
following limits:
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Taylor Series and Integration

Use a Taylor series to integrate the following:
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Taylor Series and Integration Approximation

Use a Taylor series to approximate each of the following integrals. Determine the maximum error
in your approximation.
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Taylor Series and Approximation

Approximate each of the following using a Taylor series. Give the maximum error in your approxi-
mation.

(a) ln(1.1)

(b) cos(1/3)

(c) arctan(3/2)
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Taylor Series and Infinite Series

Use a Taylor series to evaluate each of the following sums:
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Miscellaneous Problems

(a) Show that e is an irrational number using the following argument: Assume that e is rational.
Let e = p/q. Approximate e using its Taylor series to the qth term with its error term. Show that

this approximation can be written sq+
ew

(q + 1)!
, where sq is a sum of q numbers and 0 < w < 1.

Explain why q!(e− sq) is an integer. Explain why q!(e− sq) < 1. Explain why this shows that e
cannot be irrational.

(b) If f(x) has a power series about x = 0 with radius of convergence R, show that g(x) =

f

(
x− 1

2

)
has a power series with radius of convergence of 2R about x = 1.

(c) Use the Taylor series for cosx, sinx to show that eiθ = cos θ + i sin θ, where i2 = −1. Then use
this to show that eiπ + 1 = 0.
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