Radius/Interval of Convergence

Determine the interval and radius of convergence of each of the following power series.
(a) $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{n+2}$
(b) $\sum_{n=0}^{\infty} x^{n} \sqrt{n}$
(c) $\sum_{n=0}^{\infty} \frac{x^{n} 2^{n}}{n!\sqrt{n+1}}$
(d) $\sum_{n=1}^{\infty} \frac{n^{n} x^{n}}{2^{n}}$
(e) $\sum_{n=1}^{\infty} \frac{x^{n}}{n 2^{n}}$
(f) $\sum_{n=2}^{\infty} \frac{x^{n}}{3^{n} \ln n}$
(g) $\sum_{n=1}^{\infty} \frac{n^{n} x^{n}}{(2 n)!}$
(h) $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$

Deriving Taylor Series

Derive the Maclaurin series for each of the following functions. Determine the radius and interval of convergence of each.
(a) $\frac{1}{1-x}$
(b) $\sin x$
(c) $\arctan x$
(d) e^{x}
(e) $\ln (1+x)$

Quickly Deriving Taylor Series

Use a known Taylor series to find the Maclaurin series of the following functions. You may need to differentiate or integrate known series to find them!
(a) $\frac{1}{1+2 x}$
(b) $\frac{x^{3}}{1-3 x^{2}}$
(c) e^{2+x}
(d) $\sqrt{e^{x}}$
(e) $x^{2} e^{-x}$
(f) $\frac{1+x}{1-x}$
(g) $\ln \left(\frac{1-x}{1+x}\right)$
(h) $\frac{1}{(1-x)^{2}}$
(i) $e^{x} \sin x$
(j) $2 \sin x \cos x$

Taylor Series and Limits

Use a Taylor series to evaluate the following limits:
(a) $\lim _{x \rightarrow 0} \frac{\sin x}{x}$
(b) $\lim _{x \rightarrow 0} \frac{\cos x-1}{x}$
(c) $\lim _{x \rightarrow 0} \frac{\arctan x-x}{x^{3}}$

Harder Taylor Series Limits ($\operatorname{Big} O$)

Use a finite Taylor series approximation and its error term (the big O notation) to evaluate the following limits:
(a) $\lim _{x \rightarrow 0} \frac{\sin x-x+2 x^{3}}{x^{2}}$
(b) $\lim _{x \rightarrow 0} \frac{\cos x \sin (x \ln (1+x))}{x^{2}}$

Taylor Series and Integration

Use a Taylor series to integrate the following:
(a) $\int x \cos x^{2} d x$
(b) $\int \arctan x^{2} d x$
(c) $\int \frac{e^{x}-1}{x} d x$

Taylor Series and Integration Approximation

Use a Taylor series to approximate each of the following integrals. Determine the maximum error in your approximation.
(a) $\int_{0}^{1} e^{-x^{2}} d x$
(b) $\int_{0}^{1} \sin x^{2} d x$
(c) $\int_{0}^{1} \frac{\sin x}{x} d x$
(d) $\int_{0}^{1} \frac{3}{x^{3}+27} d x$

Taylor Series and Approximation

Approximate each of the following using a Taylor series. Give the maximum error in your approximation.
(a) $\ln (1.1)$
(b) $\cos (1 / 3)$
(c) $\arctan (3 / 2)$
(d) $\sqrt{101}$
(e) $\sqrt[4]{e}$

Taylor Series and Infinite Series

Use a Taylor series to evaluate each of the following sums:
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$
(b) $\sum_{n=1}^{\infty} \frac{3^{n}}{5^{n} n!}$
(c) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}$
(d) $\sum_{n=0}^{\infty}(-1)^{n} \frac{\pi^{2 n}}{36^{n}(2 n)!}$
(e) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{2^{n}}{n 3^{n}}$
(f) $\sum_{n=0}^{\infty} \frac{n}{2^{n}}$

Miscellaneous Problems

(a) Show that e is an irrational number using the following argument: Assume that e is rational. Let $e=p / q$. Approximate e using its Taylor series to the q th term with its error term. Show that this approximation can be written $s_{q}+\frac{e^{w}}{(q+1) \text { ! }}$, where s_{q} is a sum of q numbers and $0<w<1$. Explain why $q!\left(e-s_{q}\right)$ is an integer. Explain why $q!\left(e-s_{q}\right)<1$. Explain why this shows that e cannot be irrational.
(b) If $f(x)$ has a power series about $x=0$ with radius of convergence R, show that $g(x)=$ $f\left(\frac{x-1}{2}\right)$ has a power series with radius of convergence of $2 R$ about $x=1$.
(c) Use the Taylor series for $\cos x, \sin x$ to show that $e^{i \theta}=\cos \theta+i \sin \theta$, where $i^{2}=-1$. Then use this to show that $e^{i \pi}+1=0$.

