Problem 1: Cartesian to Polar

Convert the following cartesian coordinates to polar coordinates. Be sure to draw a diagram to illustrate the conversion.

- (i) $(3/\sqrt{2}, 3\sqrt{2})$
- (ii) $(1/4, -\sqrt{3}/4)$
- (iii) $(-1,\sqrt{3})$
- (iv) $(-2, -2\sqrt{3})$
- (v) $(1/2, \sqrt{3}/4)$
- (vi) $(-1/2\sqrt{2}, -1/2\sqrt{2})$
- (vii) $(3\sqrt{2}, -3\sqrt{2})$
- (viii) $(-3\sqrt{3}/2, 3/2)$

Problem 2: Polar to Cartesian

Convert the following polar coordinates to cartesian coordinates. Be sure to draw a diagram to illustrate the conversion.

- (i) $(1, -\pi/6)$
- (ii) $(1/2, 7\pi/6)$
- (iii) $(4, 11\pi/6)$
- (iv) $(2, 3\pi/4)$
- (v) $(3, 2\pi/3)$
- (vi) $(1, 7\pi/4)$
- (vii) $(1/4, \pi/6)$
- (viii) $(2, -11\pi/6)$

Problem 3: Cartesian Plots to Polar

Convert the following equations to polar form:

- (i) y = 5x 2
- (ii) $xy^2 = 1$

(iii) $x^{2} + y^{2} = 4$ (iv) $x^{2} + 3y^{2} = 5$ (v) x = 2(vi) y = -4(vii) $y = 2 - x^{2}$

Problem 4: Polar Plots

Plot the following polar functions:

(i) $r = \theta$ (ii) $r = 2\cos 4\theta$ (iii) $r^2 = 2\cos 2\theta$ (iv) $r = 2\sin 4\theta$ (v) $r^2 = 1/\theta$ (vi) $r = 5 - 5\sin \theta$ (vii) $r = 3 + \sin \theta$ (viii) $r = 5 - 5\cos \theta$ (ix) $r = 1 + 3\cos \theta$

Problem 5: Derivatives with Polar Coordinates

- (i) Find the slope of the tangent line for $r(\theta) = 1 + \cos \theta$ at any given θ .
- (ii) Find the slope of the tangent line for $r(\theta) = \cos 2\theta$ at any given θ .
- (iii) Find the slope of the tangent line for $r(\theta) = \sin^2 \theta$ at any given θ .
- (iv) Find the slope of the tangent line for $r(\theta) = 1/\theta$ at any given θ .
- (v) Find the slope of the tangent line for $r(\theta) = \sin \theta \cos \theta$ at any given θ .
- (vi) Find the second derivative of $r(\theta) = \sin \theta$ at any given θ .
- (vii) Find the second derivative of $r(\theta) = \cos \theta$ at any given θ .
- (viii) Find the second derivative of $r(\theta) = 1 + \cos \theta$ at any given θ .
- (ix) Find the second derivative of $r(\theta) = 1/\theta$ at any given θ .

Problem 6: Area with Polar Coordinates

- (i) Find the area inside the cardioid $r(\theta) = 1 + \cos \theta$.
- (ii) Find the area between $r(\theta) = 2$ and $r(\theta) = 3\sin\theta$.
- (iii) Find the area inside of $r = \sin^2 \theta$.
- (iv) Find the area inside of $r = \cos 3\theta$.
- (v) Find the area inside of the inner loop of $r(\theta) = 2 + 4\cos\theta$.
- (vi) Find the area inside $r(\theta) = 2 + 2\sin\theta$ and outside $r(\theta) = 2$.
- (vii) Find the area outside of $r(\theta) = 5 + 3\sin\theta$ and inside $r(\theta) = 3$.

Problem 7: Area between Curves

Find the area between the given curves:

(i)
$$f(x) = x^2$$
, $g(x) = 0$, $x = -2$, $x = 2$
(ii) $f(x) = x$, $g(x) = \sin x$
(iii) $f(x) = x^2 - 10$, $g(x) = 5 - 2x$
(iv) $f(x) = \sin x$, $g(x) = \cos x$, $x = 0$, $x = 2\pi$
(v) $f(x) = \sqrt{x}$, $g(x) = x$
(vi) $f(x) = x^2$, $g(x) = \sqrt[3]{x}$
(vii) $f(x) = x^2$, $g(x) = \sqrt[3]{x}$
(viii) $f(x) = x^2$, $y = 4$, $x = 0$
(ix) $f(x) = \sqrt[5]{x}$, $x = 0$, $y = 32$
(x) $y = x - 1$, $y^2 = 2x + 6$
(xi) $x = y^2 - 4$, $x = y + 2$
(xii) $x = y^3 - 10y + 3$, $x = 3 - 3y^2$

Problem 8: Volume of Rotations

Set up the integral for calculating – but do not compute – the volume of rotating the given region about the given axis. Whenever possible, set up the integral for both the Shell Method and the Disk/Washer Method.

- (i) y = 2x 4, x = 6, y = 0 about the x-axis
- (ii) y = 2x 4, x = 6, y = 0 about the y-axis

- (iii) $y = x^2$, y = 3, x = 0 about the *x*-axis
- (iv) $y = x^2$, y = 3, x = 0, about the y-axis
- (v) $y = \sqrt[3]{x}$, y = x/4, about the *x*-axis
- (vi) $y = \sqrt[3]{x}$, y = x/4, about the line x = 6
- (vii) $y = \sqrt[3]{x}$, y = x/4, about the line x = -5
- (viii) $y = \sqrt{x-1}$, $y = (x-1)^2$ about the line y = 7
- (ix) $y = \sqrt{x-1}$, $y = (x-1)^2$ about the line y = -5
- (x) $y = \sqrt{x-1}, y = (x-1)^2$ about the line x = 7
- (xi) $y = \sqrt{x-1}$, $y = (x-1)^2$ about the line x = -4

Problem 9: Area by Cross Sections

- (i) The base of a solid has boundary given by the curves $f(x) = x^2 1$ and $g(x) = 1 x^2$. The cross sections perpendicular to the *x*-axis are equilateral triangles. Find the volume of the solid.
- (ii) The base of a solid has boundary given by the curves $f(x) = x^2 1$ and $g(x) = 1 x^2$. The cross sections perpendicular to the *x*-axis are semicircles. Find the volume of the solid.
- (iii) Find the volume of a solid pyramid with square base that is 5 units tall and 20 units on the side.
- (iv) A regular cone has a base that is 4 units across and 5 units tall. Find the volume of the cone.
- (v) The base of a solid has boundary given by $y = 4-x^2/9$ and y = 0. Cross sections perpendicular to the *x*-axis are rectangles with heights twice the length of the side lying in the plane. Find the volume of this solid.
- (vi) The base of a solid has boundary given by $y = \sqrt{4 x^2}$ and y = 0. Cross sections parallel to the *x*-axis are squares. Find the volume of the solid.
- (vii) The base of a solid has boundary given by the ellipse $4x^2 + 9y^2 = 9$. Cross sections perpendicular to the *x*-axis are isosceles right triangles with the hypotenuse lying in the plane. Find the volume of the solid.
- (viii) The base of a solid has boundary given by $x^2 + y^2 = 4$. The cross sections perpendicular to the *x*-axis are equilateral triangles. Find the volume of the solid.
- (ix) The base of a solid is given by the curve $y = \sin x$ from 0 to π and the curve y = 0. Cross sections perpendicular to the *x*-axis are semicircles. Find the volume of the solid.
- (x) The base of a solid is given by the curves $y = \sqrt{x}$ and $y = x^2$. Slices perpendicular to the *y*-axis are rectangles with height a third the length of the side lying in the plane. Find the volume of the solid.

Problem 10: Arc Length

Set up the integrals to calculate – but do not evaluate – the following lengths:

- (i) The length of the curve $y^2 = x$ from (0,0) to (1,1)
- (ii) The length of the curve $y = \sin x$ from (0,0) to $(2\pi,0)$
- (iii) The length of the curve xy = 1 from (1, 1) to (2, 1/2)
- (iv) The length of the curve $x^2 + y^2 = 9$ from (3,0) to (0,-3)
- (v) The length of the curve $y^2 = 4(x+4)^3$ for $x \in [0,2]$ and y > 0.
- (vi) The length of the curve $x = y^2 + 3$ from (4, -1) to (4, 1)
- (vii) The length of the curve

$$\begin{cases} x(t) = t^3 + 2t + 1\\ y(t) = 2t + 1 \end{cases}$$

from t = 0 to t = 1

(viii) The length of the curve

$$\begin{cases} x(t) = 2\cos t \\ y(t) = 3\sin t \end{cases}$$

for t = 0 to $t = 2\pi$.

(ix) The length of the curve

$$\begin{cases} x(t) = e^{-t} \\ y(t) = 2t \sin t \end{cases}$$

for t = 0 to $t = 3\pi$.

Problem 11: Surface Area

Set up the integrals to find – but do not evaluate – the following:

- (i) The surface area from rotating $y = \sqrt{9 x^2}$ for $y \ge 0$ about the *x*-axis.
- (ii) The surface area from rotating $y = \sqrt[3]{x}$ from (0,0) to (8,2) about the *x*-axis.
- (iii) The surface area from rotating $y = \sqrt[3]{x}$ from (0,0) to (8,2) about the *y*-axis.
- (iv) The surface area from rotating $y = \sqrt{4x+1}$ from (0,1) to (2,3) about the line x = 6.
- (v) The surface area from rotating $y = \sqrt{4x+1}$ from (0,1) to (2,3) about the line y = 5.
- (vi) The surface area from rotating $x = \log_7(2y+1)$ from (0,0) to (1,3) about the line x = -3.
- (vii) The surface area from rotating $x = \log_7(2y+1)$ from (0,0) to (1,3) about the line y = -3.
- (viii) The surface area from rotating $y = x^3$ from (0,0) to (2,8) about the line y = -2.

- (ix) The surface area from rotating $y = x^3$ from (0,0) to (2,8) about the line x = 6.
- (x) The surface area from rotating $y = x^3$ from (0,0) to (2,8) about the line x = -2.
- (xi) The surface area from rotating $x = 3t^2$, $y = 2t^3$ for $0 \le t \le 5$ about the *y*-axis.