Problem 1: Verifying Solutions

Check if the given functions are solutions to the given differential equations:
(i) $y(t)=e^{t} ; y^{\prime}-3 t y=0$
(ii) $y(t)=t^{2} ; t^{2} y^{\prime \prime}-2 y=0$
(iii) $y(t)=1 / t ; t^{2} y^{\prime \prime}-2 y=0$
(iv) $y(t)=t \sin t ; t^{2} y^{\prime \prime}-2 y=0$
(v) $y(t)=e^{3 t}+1 ; y^{\prime}=3 y$
(vi) $y(t)=1 ; y y^{\prime \prime}+\left(y^{\prime}\right)^{2}=0$
(vii) $y(t)=3-e^{-t / 3} ; 2 y^{\prime}+y=3$
(viii) $y(t)=\sqrt{t} ; y y^{\prime \prime}+\left(y^{\prime}\right)^{2}=0$
(ix) $y(t)=\sin 2 t ; y^{\prime \prime}+4 y=0$
(x) $y(t)=\sqrt{t} ; y^{\prime \prime}-y / t+3=0$
(xi) $y(t)=C t^{3} ; t y^{\prime}-3 y=0$

Problem 2: Slope Fields

Plot the following slope/vector fields:
(i) $y^{\prime}=2$
(ii) $y^{\prime}=x$
(iii) $y^{\prime}=y$
(iv) $y^{\prime}=x-y$
(v) $y^{\prime}=x+y$
(vi) $y^{\prime}=x^{2}$
(vii) $y^{\prime}=\cos x$
(viii) $y^{\prime}=1 / x$
(ix) $y^{\prime}=x / y$

Problem 3: Separable Equations

Solve the following differential equations:
(i) $x y^{\prime}=y$
(ii) $y^{\prime}=1$
(iii) $y^{\prime} \sin x=y \ln y$
(iv) $y^{\prime}=x y+2 x+y+2$
(v) $y^{\prime}-x y=x$
(vi) $y^{\prime}=y^{2} /\left(x^{2}+3 x+2\right)$
(vii) $y^{\prime}=x e^{y}$
(viii) $(x+x y) y^{\prime}+y=0$
(ix) $y^{\prime}=x /(3-y)$
(x) $x y^{\prime}-x y=y$

Problem 4: Euler's Method

(i) Approximate $y(1)$ if $y^{\prime}=y-x$ and $y(0)=1 / 2$. Use $h=0.5$.
(ii) Approximate $y(1.2)$ if $y^{\prime}=x^{2}-y$ and $y(0)=1$. Use $h=0.4$.
(iii) Approximate $y(0.9)$ if $y^{\prime}=x y$ and $y(0)=2$. Use $h=0.3$.

Problem 5: Homogeneous Equations

Solve the following differential equations:
(i) $(x-2 y) d x+x d y=0$
(ii) $x^{2} d y+\left(y^{2}-x y\right) d x=0$
(iii) $(x-y) d x+x d y=0$
(iv) $\left(x^{2}-y^{2}\right) d x+2 x y d x=0$
(v) $\left(x^{2} y+2 x y^{2}-y^{3}\right) d x-\left(2 y^{3}-x y^{2}+x^{3}\right) d y=0$
(vi) $(x \sin (y / x)-y \cos (y / x)) d x+x \cos (y / x) d y=0$

Problem 6: First-Order Linear Equations

Solve the following differential equations:
(i) $y^{\prime}+y=e^{x}$
(ii) $y^{\prime}+y / x=x^{2}$
(iii) $y^{\prime}+y \cos x=\sin 2 x$
(iv) $x y^{\prime}=x^{2}+3 y$
(v) $y^{\prime}+2 x y=0$
(vi) $x^{2} y^{\prime}+3 x y=1$
(vii) $y^{\prime}+4 x y=x$
(viii) $(x \ln x) y^{\prime}+y=\ln x$
(ix) $y^{\prime}-x=x y$

Problem 7: Applied Integrals

(i) A spring has rest length of 1 m . A force of 25 N stretches the spring by 0.5 m . Determine how much work is done stretching the spring 1.5 m beyond its rest length. Determine how much work is done compressing the spring by 0.2 m .
(ii) Determine the amount of work required to lift a 5 kg block using a thin near massless wire 5 m vertically off of the ground.
(iii) A 10kg solid block is attached by a thin near massless wire to a pulley of radius 1 m high above the block. Determine the work done lifting the block 6 complete rotations of the pulley.
(iv) A 15 kg block sits at the bottom of a well. A rope is used to haul the block to the surface - a distance of 40 m . If the rope weights $0.2 \mathrm{~kg} / \mathrm{m}$, determine the work done in performing this task.
(v) A cylindrical tank of radius 3 m and 8 m high is half full of water. Determine the amount of work it takes to pump the remaining water out of the tank through a hole in the top of the tank.
(vi) A semicircular tank lies of radius 10 m balanced on its "point" on the ground - full of water. Determine the work required to pump the liquid out of the tank if the liquid has a density of $5 \mathrm{~kg} / \mathrm{m}^{3}$.
(vii) A triangular trough is filled with water. The trough is 8 m long and has a top base shaped as a rectangle of width 3 m . The trough is also 2 m deep. Assuming the trough is full, determine the amount of work required to empty the first meter of liquid.
(viii) A triangular plate with base 6 m in length is submerged vertically so its highest point is deepest in the water - a total depth of 4 m . Determine the hydrostatic pressure on the plate.
(ix) Find the hydrostatic force on a circular plate of radius 2 m submerged vertically to a depth of 10 m .

