- NEVER FORGET $+C$!
- You need to know

$$
\sin ^{2} \theta=\frac{1-\cos 2 \theta}{2}, \quad \cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}, \quad \sin ^{2} \theta+\cos ^{2} \theta=1
$$

- Remember the sum of the geometric series (when $|r|<1$, e.g. $r=1 / 3, r=-5 / 6$, etc) is

$$
\sum_{n=n_{0}} a r^{n}=\frac{a r^{n_{0}}}{1-r}=\frac{\text { first term of series }}{1-\text { common ratio }}
$$

- There will be no work problems, differential equation problems, Root Test (though you can use it), or telescoping series problems on the final exam.
- When you make a u-sub in a definite integral, do not forget to change the upper/lower limits!
- If you are asked to sum a series on the final exam (if it converges), then with 95% certainly the series is a geometric series.
- If a series has a factorial in it, e.g. $n!,(2 n)!$, etc., then use the Ratio Test. Be careful: $(2(n+1))!=(2 n+2)!$.
- If you are given a power series and asked to find the radius and interval of convergence, throw the Ratio Test at it! Do not forget to check the endpoints!
- Remember the Ratio and Root Test never say a series just converges; they say a series converges absolutely.
- Integrals that 'look like’

$$
\int \frac{d x}{x^{4} \sqrt{9-x^{2}}}, \quad \int \frac{x^{3}}{\sqrt{1-x^{2}}} d x, \quad \int \frac{d x}{\left(x^{2}+4\right)^{3 / 2}}, \quad \int \frac{\sqrt{4 x^{2}-9}}{x} d x, \quad \int \sqrt{x^{2}-4} d x
$$

all call for Trig Sub.

- Integrals that 'look like'

$$
\int \frac{x+2}{(x-1)(x+2)} d x, \quad \int \frac{3}{x^{2}-4} d x, \quad \int \frac{2 x+5}{x\left(x^{2}+3\right)} d x, \quad \int \frac{x^{2}+2 x+1}{(x+1)(x+3)^{2}} d x
$$

all call for Partial Fractions.

- All integrals that 'look like'

$$
\int \sec ^{5} \theta \tan ^{5} \theta d \theta, \quad \int \sin ^{5} \theta d \theta, \quad \int \sin \theta^{5} \theta \cos ^{5} \theta d \theta
$$

all call for a Trigonometric Integral.

- Don't forget how to do the 'basic integrals', e.g.

$$
\int(2 x+5)^{6} d x, \quad \int \frac{d x}{(1-3 x)^{4}}, \quad \int(x+7)^{5 / 3} d x, \quad \int(x+1)\left(x^{2}+3\right)^{2} d x
$$

- Integration by Parts: LIATE (logs, inverse trig, algebraic (polynomials really), trig, exponential), fill in the box, rule of 7 with $-\int$.
- Volumes of Rotation: Shells or Disks. Remember, two l's gets 2π.

Shells: $2 \pi \int_{a}^{b}$ radius . 'height' $d \sim \quad$ Disks: $\pi \int_{a}^{b}(\text { outer radius })^{2}-(\text { inner radius })^{2} d \sim$

- NOTATION IS EVERYTHING FOR IMPROPER INTEGRALS! Do not drop your limits and be careful!
- Arclength:

$$
\int_{a}^{b} \sqrt{1+\left(f^{\prime}(\sim)\right)^{2}} d \sim
$$

- Surface Area:

$$
2 \pi \int \text { radius } \cdot \sqrt{1+\left(f^{\prime}(\sim)\right)^{2}} d \sim
$$

The radius piece will look like $x, y, x+2,4-x, y+3$, etc. or will be like $f(x), f(y), f(x)+2$, $6-f(y)$, etc.

- Polar Area:

$$
\frac{1}{2} \int_{\alpha}^{\beta} f(\theta)^{2} d \theta
$$

Function/Angle	0°	$30^{\circ}, \frac{\pi}{6}$	$45^{\circ}, \frac{\pi}{4}$	$60^{\circ}, \frac{\pi}{3}$	$90^{\circ}, \frac{\pi}{2}$	$180^{\circ}, \pi$	$270^{\circ}, \frac{3 \pi}{2}$
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0	-1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0
$\tan \theta$	0	$\frac{\sqrt{3}}{3}$	1	$\frac{1}{2}$	$\pm \infty$	0	$\pm \infty$

