Problem 1: Integrate the following:

(a)
$$\int \frac{x^3}{\sqrt{1-x^2}} \, dx$$

(b)
$$\int \frac{-x+5}{(x+1)(x-2)} dx$$

(c)
$$\int_0^\infty \frac{x}{(x^2+1)^2} dx$$

(d)
$$\int \frac{dx}{x^2 \sqrt{x^2 - 9}}$$

(e)
$$\int_{2}^{6} \frac{dx}{6(x-2)^{3/2}}$$

(f)
$$\int \frac{x}{\sqrt{x^2 + 36}} \, dx$$

(g)
$$\int \frac{3x^2 + 4x + 3}{(x+1)(x^2+1)} \, dx$$

(h)
$$\int_{-2}^{0} \frac{2}{(x+2)^{1/4}} dx$$

(i)
$$\int \frac{x+4}{x(x-2)^2} dx$$

Problem 2: Integrate the following:

(a)
$$\int \frac{x^2+3}{x^3+x} \, dx$$

(b)
$$\int \frac{-4x - 16}{x^3 + 16x} dx$$

(c)
$$\int_{1}^{3} \frac{dx}{\sqrt{3-x}}$$

$$(d) \int_0^\infty \frac{3}{(x+1)^2} \ dx$$

(e)
$$\int \frac{x^3}{\sqrt{4-x^2}} \, dx$$

(f)
$$\int \frac{3x}{x^2 + 3x - 4} \, dx$$

$$(g) \int \frac{x}{x^2 + 2x + 5} \, dx$$

$$\text{(h) } \int_1^4 \frac{dx}{\sqrt{x-1}}$$

(j)
$$\int \frac{x^3}{\sqrt{x^2 + 25}} dx$$

(k)
$$\int_3^5 \frac{dx}{(x-3)^2}$$

(1)
$$\int \frac{3}{x^2 \sqrt{x^2 + 9}} dx$$

(m)
$$\int \frac{x+4}{x^2-4} \, dx$$

(n)
$$\int \frac{3x}{(x+1)(x-2)} dx$$

(o)
$$\int_{-1}^{1} \frac{dx}{x+1}$$

$$(p) \int \frac{dx}{\sqrt{16 - x^2}}$$

(q)
$$\int_0^1 x \ln x \ dx$$

(i)
$$\int_{-\infty}^{\infty} \frac{e^x}{1 + e^{2x}} dx$$

(j)
$$\int_{-\infty}^{-1} x e^{-x^2} dx$$

(k)
$$\int \frac{2x^2 + x}{(x-2)(x^2+1)} dx$$

(1)
$$\int_0^\infty \frac{dx}{(x+1)^3}$$

(m)
$$\int_0^\infty \frac{2x}{x^4+1} \ dx$$

(n)
$$\int \frac{x^2 + 4x + 2}{x^2 + 1} dx$$

(o)
$$\int_{1}^{\infty} \tan^{-1} x \, dx$$

(p)
$$\int_0^4 \frac{x^3 - 1}{2\sqrt{x}} dx$$

Problem 3: Complete the following:

- (a) Set up but do not evaluate the integral that gives the area of the surface revolving the curve $y = \sqrt{2x+1}$ from x = 0 to x = 4 around the x-axis.
- (b) Set up but do not evaluate an integral to find the area of the surface obtained by rotating the curve $y = \ln(1 x^2)$ for $0 \le x \le 1/2$ about the x-axis.
- (c) Set up but do not evaluate the area of the surface obtained by rotating the curve $y = \sqrt{1+4x}$ for $5 \le x \le 11$ about the x-axis.
- (d) Set up but do not evaluate an integral for computing the area of the surface obtained by rotating the arc of the parabola $y = x^2$ between x = 1 and x = 3 around the y-axis.
- (e) The curve $y=x^3$ for $1 \le x \le 2$ is rotated about the x-axis. Find the area of the resulting surface.
- (f) Set up but do not evaluate an integral to compute the surface area resulting from rotating the curve $y = \sqrt[3]{x}$, $1 \le x \le 8$, about the *y*-axis.
- (g) Find the area of the surface of revolution generated by revolving the curve $x^3 = 3y$, $0 \le y \le 9$ about the x-axis.

Problem 4: Write out the form of the partial fraction decomposition of

$$f(x) = \frac{x^4 + 3}{x^3(x+5)^2(x^2 + 2x + 3)^2}$$

You do not need to find the numerical value of the coefficients. You need only specify the form of the decomposition.