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Problem 1: Determine whether the following series converges or diverges. Be sure to prove your
answer.
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The series is alternating. Observe lim
n→∞
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ln n

= 0. Clearly,
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ln n
is decreasing in n. Therefore,
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converges by the Alternating Series Test.

Problem 2: Determine whether the following series converges conditionally, converges absolutely, or
diverges. Be sure to justify your answer completely.
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The series clearly alternates. Observe lim
n→∞

n
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= 0 and for sufficiently large n, the series is decreasing:
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so that the sequence is decreasing for n > 4. [The first 5 terms to not affect the

convergence/divergence.] Therefore,
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converges by the Alternating Series Test. Now consider the

series (noting we ignore the n= 0 term as it does not effect convergence)

∞
∑

n=1

n
n2 + 4

≥
∞
∑

n=1

n
n2 + 4n2

=
1
5

∞
∑

n=1

1
n

The series
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diverges by the p-test. Therefore,
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diverges by the Comparison Test. Therefore,
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converges only conditionally.


