Problem 1: Determine whether the following series converges or diverges. Be sure to prove your answer.

$$
\sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{\ln n}
$$

The series is alternating. Observe $\lim _{n \rightarrow \infty} \frac{1}{\ln n}=0$. Clearly, $\frac{1}{\ln n}$ is decreasing in n. Therefore, $\sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{\ln n}$ converges by the Alternating Series Test.

Problem 2: Determine whether the following series converges conditionally, converges absolutely, or diverges. Be sure to justify your answer completely.

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} n}{n^{2}+4}
$$

The series clearly alternates. Observe $\lim _{n \rightarrow \infty} \frac{n}{n^{2}+4}=0$ and for sufficiently large n, the series is decreasing: $\frac{d}{d x}\left(\frac{x}{x^{2}+4}\right)=\frac{4-x^{2}}{\left(x^{2}+4\right)^{2}}$ so that the sequence is decreasing for $n>4$. [The first 5 terms to not affect the convergence/divergence.] Therefore, $\sum_{n=0}^{\infty} \frac{(-1)^{n} n}{n^{2}+4}$ converges by the Alternating Series Test. Now consider the series (noting we ignore the $n=0$ term as it does not effect convergence)

$$
\sum_{n=1}^{\infty} \frac{n}{n^{2}+4} \geq \sum_{n=1}^{\infty} \frac{n}{n^{2}+4 n^{2}}=\frac{1}{5} \sum_{n=1}^{\infty} \frac{1}{n}
$$

The series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges by the p-test. Therefore, $\sum_{n=0}^{\infty} \frac{n}{n^{2}+4}$ diverges by the Comparison Test. Therefore, $\sum_{n=0}^{\infty} \frac{(-1)^{n} n}{n^{2}+4}$ converges only conditionally.

