
Name: Caleb McWhorter — Solutions Quiz 13: Power Series
MAT 296 Fall 2017

Problem 1: Determine whether the following series converges or diverges. Be sure to justify your
answer.
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Therefore, the series
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converges absolutely by the Ratio Test.

Problem 2: Determine whether the following series converges or diverges. Be sure to justify your
answer.
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Therefore,
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converges absolutely by the Root Test.



Problem 3: Determine the center, interval and radius of convergence for the power series
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Clearly, the center of this series is x = −1.
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We then have radius of convergence
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This series clearly diverges by the p-series test.
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Since the series is alternating, lim n→∞ 1
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