
Name: Caleb McWhorter — Solutions Quiz 4: Area & Arclength
MAT 296 Fall 2017

Problem 1: Find the arclength of the curve x(y) = ln | sin y| for π6 ≤ x ≤ π
3 .

We have x(y) = ln | sin y| so that x ′(y) =
1

sin y
· cos y = cot y.
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Problem 2: Find the area between the curves x = y2 − 1 and x = 14− 2y .

The curve x = y2−1 is clearly a ‘sideways’ parabola and the curve x = 14−2y is a line. It should also
be clear, the curve lies ‘to the right’ of the parabola. We need only find the intersections:

y2 − 1= 14− 2y

y2 + 2y − 15= 0

(y − 3)(y + 5) = 0

Therefore, we have y = 3 or y = −5. Then the area between the curves is

A=

∫ 3

−5

(14− 2y)− (y2 − 1) d y =

∫ 3

−5

15− 2y − y2 d y

=
�

15y − y2 −
1
3

y3
�

�

�

�

�

3

−5

= (15(3)− 32 −
33

3
)− (15(−5)− 25−

(−5)3

3
)

= 15(3)− 32 −
33

3
+ 15(5) + 25−

53

3

= 15(3+ 5)− 9+ 25−
1
3
(33 + 53)

= 120+ 16−
1
3
(125+ 27)

= 136−
152

3

=
408
3
−

152
3
=

256
3



Problem 3: Suppose R is the region in R2 whose boundary is formed by the curve y =
p

x , the x–axis,
and the line y = x − 2.

(a) Sketch the region R.
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For the following parts, observe y =
p

x ⇐⇒ x = y2 and y = x − 2⇐⇒ x = y + 2.

(b) Set up completely as possible but do not evaluate integrals calculating via the Disk/Washer method
the volume of the solid formed by rotating the region R about the lines x = −3 and y = 5.
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(c) Set up completely as possible but do not evaluate integrals calculating via the Shell Method the
volume of the solid formed by rotating the region R about the lines x = −3 and y = 5.
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