Problem 1: Find the arclength of the curve $x(y)=\ln |\sin y|$ for $\frac{\pi}{6} \leq x \leq \frac{\pi}{3}$.

$$
\begin{aligned}
& \text { We have } x(y)=\ln |\sin y| \text { so that } x^{\prime}(y)=\frac{1}{\sin y} \cdot \cos y=\cot y \\
& L \\
& =\int_{\pi / 6}^{\pi / 3} \sqrt{1+\cot ^{2} y} d y=\int_{\pi / 6}^{\pi / 3} \sqrt{\csc ^{2} y} d y=\int_{\pi / 6}^{\pi / 3} \csc y d y=\left.\ln |\csc y-\cot y|\right|_{\pi / 6} ^{\pi / 3} \\
& \\
& =\ln \left|\csc \frac{\pi}{3}-\cot \frac{\pi}{3}\right|-\ln \left|\csc \frac{\pi}{6}-\cot \frac{\pi}{6}\right|=\ln \left|\frac{2}{\sqrt{3}}-\frac{1}{\sqrt{3}}\right|-\ln |2-\sqrt{3}|=\ln \left|\frac{1}{\sqrt{3}}\right|-\ln |2-\sqrt{3}| \\
& \\
& =\ln \left|\frac{1 / \sqrt{3}}{2-\sqrt{3}}\right|=\ln \left|\frac{1}{2 \sqrt{3}-3}\right|=\ln \left|\frac{1}{2 \sqrt{3}-3} \cdot \frac{2 \sqrt{3}+3}{2 \sqrt{3}+3}\right|=\ln \left|\frac{2 \sqrt{3}+3}{3}\right|=\ln \left|1+\frac{2}{\sqrt{3}}\right| \approx 0.767652
\end{aligned}
$$

Problem 2: Find the area between the curves $x=y^{2}-1$ and $x=14-2 y$.
The curve $x=y^{2}-1$ is clearly a 'sideways' parabola and the curve $x=14-2 y$ is a line. It should also be clear, the curve lies 'to the right' of the parabola. We need only find the intersections:

$$
\begin{aligned}
y^{2}-1 & =14-2 y \\
y^{2}+2 y-15 & =0 \\
(y-3)(y+5) & =0
\end{aligned}
$$

Therefore, we have $y=3$ or $y=-5$. Then the area between the curves is

$$
\begin{aligned}
A=\int_{-5}^{3}(14-2 y)-\left(y^{2}-1\right) d y & =\int_{-5}^{3} 15-2 y-y^{2} d y \\
& =\left.\left(15 y-y^{2}-\frac{1}{3} y^{3}\right)\right|_{-5} ^{3} \\
& =\left(15(3)-3^{2}-\frac{3^{3}}{3}\right)-\left(15(-5)-25-\frac{(-5)^{3}}{3}\right) \\
& =15(3)-3^{2}-\frac{3^{3}}{3}+15(5)+25-\frac{5^{3}}{3} \\
& =15(3+5)-9+25-\frac{1}{3}\left(3^{3}+5^{3}\right) \\
& =120+16-\frac{1}{3}(125+27) \\
& =136-\frac{152}{3} \\
& =\frac{408}{3}-\frac{152}{3}=\frac{256}{3}
\end{aligned}
$$

Problem 3: Suppose R is the region in \mathbb{R}^{2} whose boundary is formed by the curve $y=\sqrt{x}$, the x-axis, and the line $y=x-2$.
(a) Sketch the region R.

For the following parts, observe $y=\sqrt{x} \Longleftrightarrow x=y^{2}$ and $y=x-2 \Longleftrightarrow x=y+2$.
(b) Set up completely as possible but do not evaluate integrals calculating via the Disk/Washer method the volume of the solid formed by rotating the region R about the lines $x=-3$ and $y=5$.

$$
\begin{array}{ll}
x=-3: & \pi \int_{0}^{2}(3+(y+2))^{2}-\left(3+y^{2}\right)^{2} d y \\
y=5: & \pi \int_{0}^{2} 5^{2}-(5-\sqrt{x})^{2} d x+\pi \int_{2}^{4}(5-(x-2))^{2}-(5-\sqrt{x})^{2} d x
\end{array}
$$

(c) Set up completely as possible but do not evaluate integrals calculating via the Shell Method the volume of the solid formed by rotating the region R about the lines $x=-3$ and $y=5$.

$$
\begin{array}{ll}
x=-3: & 2 \pi \int_{0}^{2} x \sqrt{x} d x+2 \pi \int_{2}^{4} x(\sqrt{x}-(x-2)) d x \\
y=5: & 2 \pi \int_{0}^{2}(5-y)\left((y+2)-y^{2}\right) d y
\end{array}
$$

