\qquad Quiz 7: Work
MAT 296
Fall 2017
Problem 1: A storage tank filled with a volatile liquid with density ρ is located so the top of the tank is 10 m below the ground. The tank, shown below, is conical with top width of 14 m and height 22 m . The tank is filled to a depth of 8 m . Set up completely as possible but do not integrate an integral to calculate the work required to empty the contents of the tank to the surface.

Since the top of the tank is width 14 m , the 'base' radius of the cone is $R=7 \mathrm{~m}$. The cone has height $H=22 \mathrm{~m}$. Taking a slice through the center of the cone, we have the following diagram: By similar

triangles, we have $\frac{R}{H}=\frac{r}{h}$ so that $r=h \frac{R}{H}$ and $r^{2}=h^{2} \frac{R^{2}}{H^{2}}$. Now consider the force on some small slice of liquid in the tank parallel to the ground: $F_{i}=m_{i} g=\rho V_{i} g$. The small slice is approximately a cylinder with radius r so that $F_{i}=\rho\left(\pi r_{i}^{2} \Delta h\right) g$. This slice has to be moved a distance $10+(H-h) m$ to reach the surface. Then we have $W_{i}=F_{i} d_{i}=\left(\rho \pi r_{i}^{2} \Delta h g\right)(10+H-h)$. Therefore, the total work is approximately

$$
W \approx \sum_{i=1}^{n} W_{i}=\left(\rho \pi r_{i}^{2} \Delta h g\right)(10+H-h)
$$

But then we have
$W=\lim _{\Delta h \rightarrow 0} \sum_{i=1}^{n} W_{i}=\lim _{\Delta h \rightarrow 0} \sum_{i=1}^{n}\left(\rho \pi r_{i}^{2} \Delta h g\right)(10+H-h)=\int_{0}^{8}\left(\rho \pi r_{i}^{2} g\right)(10+H-h) d h=\frac{\rho \pi g R^{2}}{H^{2}} \int_{0}^{8} h^{2}(10+H-h) d h$

