Problem 1:

(a) Explain what a sequence is.
(b) Explain what it means for a sequence to converge.
(c) Say that it means for $\lim _{n \rightarrow \infty} a_{n}=57$.
(d) What does it mean for a sequence to diverge?
(e) In what ways can a sequence diverge?

Problem 2: Find the first 5 terms of $x_{n}=\frac{n}{n+1}$. Does the sequence converge? If so, show that the limit is what you claim. If it diverges, explain why.

Problem 3: If a_{n} is a sequence with $a_{0}=5$ and $\lim _{n \rightarrow \infty} a_{n}=-4$, does the limit change if we instead change $a_{0}=5$ to $a_{0}=4$? Explain.

Problem 4: Write the first 7 terms of $\left\{\cos \left(\frac{n \pi}{4}\right)\right\}$. Does the sequence converge? Explain.
Problem 5: Find a formula for the following sequences:
(a) $\{1,2,4,6,8,10, \ldots\}$
(b) $\{4,7,10,13,16, \ldots\}$
(c) $\left\{1,-\frac{1}{2}, \frac{1}{4},-\frac{1}{8}, \frac{1}{16}, \ldots\right\}$
(d) $\left\{2,3, \frac{9}{2}, \frac{27}{4}, \frac{81}{8}, \frac{243}{16}, \ldots\right\}$

Problem 6: A sequence is given by $a_{0}=2$ and $a_{n+1}=2 a_{n}-1$. Find a_{6}.
Problem 7: A sequence is given by $b_{1}=1$ and $b_{n+1}=3 b_{n}+2$. Find b_{5}.
Problem 8: A sequence is given by $x_{0}=1, x_{1}=3$, and $x_{n+2}=4 x_{n}-x_{n-1}$. Find x_{4}.
Problem 9: Determine whether the following sequences converge or diverge. If the sequence converges, find the limit. Be sure to justify the limit.
(a) $a_{n}=\left(\frac{1}{2}\right)^{n}$
(d) $d_{n}=\tan ^{-1} n$
(b) $b_{n}=2^{n}$
(e) $x_{n}=\frac{2 n^{2}+1}{150 n+65}$
(c) $c_{n}=5^{-n}$
(f) $y_{n}=\frac{3 n+1}{2 n+7}$
(g) $z_{n}=\frac{5 n+1}{n^{2}+3}$
(h) $s_{n}=\frac{4^{n+2}}{5^{n}}$
(l) $r_{n}=\tan \left(\frac{4 n \pi}{1+12 n}\right)$
(i) $t_{n}=(-1)^{n}$
(m) $s_{n}=\frac{2^{n}}{n!}$
(j) $a_{n}=\left(1+\frac{3}{n}\right)^{n}$
(n) $t_{n}=\frac{\cos n}{\sqrt{1+n}}$
(k) $b_{n}=\frac{\arctan n}{n}$
(o) $u_{n}=\frac{\ln n}{n}$

Problem 10: Find the limit of the sequence

$$
\{\sqrt{2}, \sqrt{2 \sqrt{2}}, \sqrt{2 \sqrt{2 \sqrt{2}}}, \cdots\}
$$

Problem 11: Find the limit of the sequence

$$
\{\sqrt[3]{3}, \sqrt[3]{3 \sqrt[3]{3}}, \sqrt[3]{3 \sqrt[3]{3 \sqrt[3]{3}}}, \cdots\}
$$

Problem 12: If $\lim _{n \rightarrow \infty} a_{n}=0$ and $\left\{b_{n}\right\}$ is bounded, is $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=0$? Explain your reasoning.
Problem 13: What does it mean to say $\sum_{n=1}^{\infty} a_{n}=10$? Explain.
Problem 14: Explain some of the ways that a series can diverge. Give examples to demonstrate your statements.

Problem 15: Find $\sum_{i=1}^{4}\left(i^{2}-1\right)$.
Problem 16: Find $\sum_{n=1}^{5} \frac{1}{n(n+1)}$.
Problem 17: Express the following numbers as a fraction:
(a) $0 . \overline{5}$
(b) $1 . \overline{4}$
(c) $2.6 \overline{7}$
(d) $0 . \overline{55}$
(e) $5.123123 \overline{123}$

Problem 18: Determine to which of the following series, if any, the Divergence Test applies
(a) $\sum_{n=1}^{\infty}(-1)^{n}$
(f) $\sum_{n=1}^{\infty} \cos \left(\frac{1}{n}\right)$
(b) $\sum_{n=1}^{\infty} \frac{n+1}{n^{2}+1}$
(g) $\sum_{n=1}^{\infty} n \sin \left(\frac{1}{n}\right)$
(c) $\sum_{n=1}^{\infty} \frac{2 n+3}{1-5 n}$
(h) $\sum_{n=1}^{\infty}(\sin 1)^{n}$
(d) $\sum_{n=1}^{\infty} \sqrt[n]{2}$
(i) $\sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n}$
(e) $\sum_{n=1}^{\infty} \arctan n$
(j) $\sum_{n=1}^{\infty} \frac{1+4^{n}}{5^{n}}$

