Problem 1:

- (a) Explain what a sequence is.
- (b) Explain what it means for a sequence to converge.
- (c) Say that it means for $\lim_{n\to\infty} a_n = 57$.
- (d) What does it mean for a sequence to diverge?
- (e) In what ways can a sequence diverge?

Problem 2: Find the first 5 terms of $x_n = \frac{n}{n+1}$. Does the sequence converge? If so, show that the limit is what you claim. If it diverges, explain why.

Problem 3: If a_n is a sequence with $a_0 = 5$ and $\lim_{n \to \infty} a_n = -4$, does the limit change if we instead change $a_0 = 5$ to $a_0 = 4$? Explain.

Problem 4: Write the first 7 terms of $\left\{\cos\left(\frac{n\pi}{4}\right)\right\}$. Does the sequence converge? Explain.

Problem 5: Find a formula for the following sequences:

- (a) $\{1, 2, 4, 6, 8, 10, \ldots\}$
- (b) $\{4, 7, 10, 13, 16, \ldots\}$
- (c) $\{1, -\frac{1}{2}, \frac{1}{4}, -\frac{1}{8}, \frac{1}{16}, \ldots\}$
- (d) $\{2, 3, \frac{9}{2}, \frac{27}{4}, \frac{81}{8}, \frac{243}{16}, \ldots\}$

Problem 6: A sequence is given by $a_0 = 2$ and $a_{n+1} = 2a_n - 1$. Find a_6 .

Problem 7: A sequence is given by $b_1 = 1$ and $b_{n+1} = 3b_n + 2$. Find b_5 .

Problem 8: A sequence is given by $x_0 = 1$, $x_1 = 3$, and $x_{n+2} = 4x_n - x_{n-1}$. Find x_4 .

Problem 9: Determine whether the following sequences converge or diverge. If the sequence converges, find the limit. Be sure to justify the limit.

(a)
$$a_n = \left(\frac{1}{2}\right)^n$$

(b) $b_n = 2^n$
(c) $c_n = 5^{-n}$
(d) $d_n = \tan^{-1} n$
(e) $x_n = \frac{2n^2 + 1}{150n + 65}$
(f) $y_n = \frac{3n + 1}{2n + 7}$

1 of 3

(g)
$$z_n = \frac{5n+1}{n^2+3}$$

(h) $s_n = \frac{4^{n+2}}{5^n}$
(i) $t_n = (-1)^n$
(j) $a_n = \left(1+\frac{3}{n}\right)^n$
(k) $b_n = \frac{\arctan n}{n}$
(l) $r_n = \tan\left(\frac{4n\pi}{1+12n}\right)$
(m) $s_n = \frac{2^n}{n!}$
(n) $t_n = \frac{\cos n}{\sqrt{1+n}}$
(o) $u_n = \frac{\ln n}{n}$

Problem 10: Find the limit of the sequence

$$\left\{\sqrt{2},\sqrt{2\sqrt{2}},\sqrt{2\sqrt{2\sqrt{2}}},\cdots\right\}.$$

Problem 11: Find the limit of the sequence

$$\left\{\sqrt[3]{3},\sqrt[3]{3\sqrt[3]{3}},\sqrt[3]{3\sqrt[3]{3\sqrt[3]{3}}},\cdots\right\}.$$

Problem 12: If $\lim_{n\to\infty} a_n = 0$ and $\{b_n\}$ is bounded, is $\lim_{n\to\infty} (a_n b_n) = 0$? Explain your reasoning.

Problem 13: What does it mean to say $\sum_{n=1}^{\infty} a_n = 10$? Explain.

Problem 14: Explain some of the ways that a series can diverge. Give examples to demonstrate your statements.

Problem 15: Find
$$\sum_{i=1}^{4} (i^2 - 1)$$
.
Problem 16: Find $\sum_{n=1}^{5} \frac{1}{n(n+1)}$.

Problem 17: Express the following numbers as a fraction:

- (a) $0.\overline{5}$
- (b) 1.4
- (c) 2.67
- (d) $0.\overline{55}$
- (e) 5.123123123

Problem 18: Determine to which of the following series, if any, the Divergence Test applies

(a)
$$\sum_{n=1}^{\infty} (-1)^n$$
(b)
$$\sum_{n=1}^{\infty} \frac{n+1}{n^2+1}$$
(c)
$$\sum_{n=1}^{\infty} \frac{2n+3}{1-5n}$$
(d)
$$\sum_{n=1}^{\infty} \sqrt[n]{2}$$
(e)
$$\sum_{n=1}^{\infty} \arctan n$$
(f)
$$\sum_{n=1}^{\infty} \cos\left(\frac{1}{n}\right)$$
(g)
$$\sum_{n=1}^{\infty} n \sin\left(\frac{1}{n}\right)$$
(h)
$$\sum_{n=1}^{\infty} (\sin 1)^n$$
(j)
$$\sum_{n=1}^{\infty} \frac{1+4^n}{5^n}$$