MAT 296 Lecture 14: Integral Test & p-test Fall 2017

Problem 1: Integral Test: Determine whether the following series converge or diverge. Be sure to
fully justify your answer.
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Problem 2: Determine if the following p—tests converge or diverge.
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Problem 3: The p-test does not directly imply the convergence/divergence of the following se-
ries. However, the ‘p-test’ can give intuition to whether the following series converge/diverge.
Determine whether the following series converge/diverge.
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Problem 4: Suppose f(z) is a function to which the Integral Test applies. Let {a, }2° ; be the series
N

obtained by a,, = f(n) and Sy = Z an. Suppose the series Z a, converges to a number S. Show
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that the sum of the remaining terms, R, of the series (that i 1s S Sp) is bounded by
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[Hint: A picture like the one from ‘proving’ the Integral Test should help.]

Thus, we can write

Problem 5: Use the previous problem to approximate the following summations to 5 digits of
accuracy:
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