Problem 1: Integral Test: Determine whether the following series converge or diverge. Be sure to fully justify your answer.

(a)	$\sum_{n=1}^{\infty} \frac{1}{n+5}$	(g)	$\sum_{n=1}^{\infty} \frac{1}{(5n+3)^3}$
(b)	$\sum_{n=1}^{\infty} e^{-n}$	(h)	$\sum_{n=1}^{\infty} \frac{n}{n^4 + 1}$
(c)	$\sum_{n=1}^{\infty} \frac{4}{2n+5}$	(i)	$\sum_{n=1}^{\infty} \frac{\arctan n}{2n^2 + 2}$
(d)	$\sum_{n=2}^{\infty} \frac{1}{1-n}$	(j)	$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+5}}$
(e)	$\sum_{n=1}^{\infty} \frac{\ln n}{n^2}$	(k)	$\sum_{n=1}^{\infty} \frac{3}{\sqrt{n}(2+\sqrt{n})}$
(f)	$\sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln n}}$	(1)	$\sum_{n=1}^{\infty} \frac{3}{\sqrt[5]{n^3}}$

Problem 2: Determine if the following *p*-tests converge or diverge.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^{0.98}}$$

(b) $\sum_{n=1}^{\infty} \frac{1}{n^{1.001}}$
(c) $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2}}$
(d) $\sum_{n=1}^{\infty} \frac{5}{\sqrt[6]{n^7}}$
(e) $\sum_{n=1}^{\infty} \frac{6}{\sqrt[5]{n^6}}$
(f) $\sum_{n=1}^{\infty} n^{-\pi}$
(g) $\sum_{n=1}^{\infty} \frac{4}{\sqrt{n^{\pi}}}$
(h) $\sum_{n=1}^{\infty} \frac{1}{\sqrt[8]{n^{\pi}}}$
(i) $\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}}$
(j) $\sum_{n=1}^{\infty} \frac{n+1}{\sqrt{n^5}}$

Problem 3: The *p*-test does not *directly* imply the convergence/divergence of the following series. However, the '*p*-test' can give intuition to whether the following series converge/diverge. Determine whether the following series converge/diverge.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + n + 4}$$

(b) $\sum_{n=1}^{\infty} \frac{n-3}{n+6}$
(c) $\sum_{n=1}^{\infty} \frac{n+1}{n^2 + 3}$
(d) $\sum_{n=1}^{\infty} \frac{n+1}{n^3 + 3}$
(e) $\sum_{n=1}^{\infty} \frac{n}{n^{\pi} + 1}$
(f) $\sum_{n=1}^{\infty} \frac{2 + \sin n}{n^3}$
(g) $\sum_{n=1}^{\infty} \frac{2 + \sin n}{n^3}$
(h) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{\pi} + 1}}$
(i) $\sum_{n=1}^{\infty} \frac{n^2 - n - 1}{n^4 + n + 6}$
(j) $\sum_{n=1}^{\infty} \frac{n - 1}{2n^3 + n - 1}$

Problem 4: Suppose f(x) is a function to which the Integral Test applies. Let $\{a_n\}_{n=1}^{\infty}$ be the series obtained by $a_n = f(n)$ and $S_N = \sum_{n=1}^{N} a_n$. Suppose the series $\sum_{n=1}^{\infty} a_n$ converges to a number S. Show that the sum of the remaining terms, R, of the series (that is, $S - S_n$) is bounded by

$$0 \le R \le \int_N^\infty f(x) \ dx$$

Thus, we can write

$$\sum_{n=1}^{N} a_N \le \sum_{n=1}^{\infty} a_n \le \sum_{n=1}^{N} a_n + \int_N^{\infty} f(x) \, dx$$

[Hint: A picture like the one from 'proving' the Integral Test should help.]

Problem 5: Use the previous problem to approximate the following summations to 5 digits of accuracy:

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^4}$$

(b) $\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$
(c) $\sum_{n=1}^{\infty} e^{-n}$