Problem 1: Integral Test: Determine whether the following series converge or diverge. Be sure to fully justify your answer.
(a) $\sum_{n=1}^{\infty} \frac{1}{n+5}$
(g) $\sum_{n=1}^{\infty} \frac{1}{(5 n+3)^{3}}$
(b) $\sum_{n=1}^{\infty} e^{-n}$
(h) $\sum_{n=1}^{\infty} \frac{n}{n^{4}+1}$
(c) $\sum_{n=1}^{\infty} \frac{4}{2 n+5}$
(i) $\sum_{n=1}^{\infty} \frac{\arctan n}{2 n^{2}+2}$
(d) $\sum_{n=2}^{\infty} \frac{1}{1-n}$
(j) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+5}}$
(e) $\sum_{n=1}^{\infty} \frac{\ln n}{n^{2}}$
(k) $\sum_{n=1}^{\infty} \frac{3}{\sqrt{n}(2+\sqrt{n})}$
(f) $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{\ln n}}$
(l) $\sum_{n=1}^{\infty} \frac{3}{\sqrt[5]{n^{3}}}$

Problem 2: Determine if the following p-tests converge or diverge.
(a) $\sum_{n=1}^{\infty} \frac{1}{n^{0.98}}$
(f) $\sum_{n=1}^{\infty} n^{-\pi}$
(b) $\sum_{n=1}^{\infty} \frac{1}{n^{1.001}}$
(g) $\sum_{n=1}^{\infty} \frac{4}{\sqrt{n^{\pi}}}$
(c) $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^{2}}}$
(h) $\sum_{n=1}^{\infty} \frac{1}{\sqrt[8]{n^{\pi}}}$
(d) $\sum_{n=1}^{\infty} \frac{5}{\sqrt[6]{n^{7}}}$
(i) $\sum_{n=1}^{\infty} \frac{1}{n \sqrt{n}}$
(e) $\sum_{n=1}^{\infty} \frac{6}{\sqrt[5]{n^{6}}}$
(j) $\sum_{n=1}^{\infty} \frac{n+1}{\sqrt{n^{5}}}$

Problem 3: The p-test does not directly imply the convergence/divergence of the following series. However, the ' p-test' can give intuition to whether the following series converge/diverge. Determine whether the following series converge/diverge.
(a) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+n+4}$
(f) $\sum_{n=1}^{\infty} \frac{2+\sin n}{n}$
(b) $\sum_{n=1}^{\infty} \frac{n-3}{n+6}$
(g) $\sum_{n=1}^{\infty} \frac{2+\sin n}{n^{3}}$
(c) $\sum_{n=1}^{\infty} \frac{n+1}{n^{2}+3}$
(h) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{\pi}+1}}$
(d) $\sum_{n=1}^{\infty} \frac{n+1}{n^{3}+3}$
(i) $\sum_{n=1}^{\infty} \frac{n^{2}-n-1}{n^{4}+n+6}$
(e) $\sum_{n=1}^{\infty} \frac{n}{n^{\pi}+1}$
(j) $\sum_{n=1}^{\infty} \frac{n-1}{2 n^{3}+n-1}$

Problem 4: Suppose $f(x)$ is a function to which the Integral Test applies. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be the series obtained by $a_{n}=f(n)$ and $S_{N}=\sum_{n=1}^{N} a_{n}$. Suppose the series $\sum_{n=1}^{\infty} a_{n}$ converges to a number S. Show that the sum of the remaining terms, R, of the series (that is, $S-S_{n}$) is bounded by

$$
0 \leq R \leq \int_{N}^{\infty} f(x) d x
$$

Thus, we can write

$$
\sum_{n=1}^{N} a_{N} \leq \sum_{n=1}^{\infty} a_{n} \leq \sum_{n=1}^{N} a_{n}+\int_{N}^{\infty} f(x) d x
$$

[Hint: A picture like the one from 'proving' the Integral Test should help.]
Problem 5: Use the previous problem to approximate the following summations to 5 digits of accuracy:
(a) $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$
(b) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$
(c) $\sum_{n=1}^{\infty} e^{-n}$

