1 of 2

Problem 1: Derive directly the Taylor Series for the following functions at the given center x = c. Find the interval and radius convergence of the power series you find.

(a) $f(x) = x^3 - x^2 + x - 1; x = 1$ (b) $f(x) = \sin x; x = 0$ (c) $f(x) = \frac{1}{x}; x = -2$ (d) $f(x) = \cos x; x = \pi$ (e) $f(x) = e^{2x}; x = 0$ (f) $f(x) = e^{2x}; x = 1$ (g) $f(x) = \cos x; x = \frac{\pi}{4}$ (h) $f(x) = \ln(x^2 + 1); x = 0$

Problem 2: Find, using any method, the Taylor Series for the following functions at the given center x = c. Find the interval and radius of convergence of the power series you find.

(a) $f(x) = e^{-2x}$; x = 0(b) $f(x) = x \sin x$; x = 0(c) $f(x) = \frac{1}{x}$; x = 3(d) $f(x) = \frac{\ln(1+x)}{x}$; x = 0(e) $f(x) = 2 \sin x^3$; x = 1(f) $f(x) = \frac{1}{1-3x}$; x = 0(g) $f(x) = e^{3x}$; x = -2(h) $f(x) = \frac{2}{5+3x}$; x = 0(i) $f(x) = \frac{x - \tan^{-1} x}{x^3}$; x = 0(j) $f(x) = \frac{1}{x^2 + 1}$; x = 0(k) $f(x) = \frac{1}{1-x}$; x = 4(l) $f(x) = \frac{x}{2-x}$; x = 0(m) $f(x) = \frac{x}{2-x}$; x = 5(n) $f(x) = \frac{x^2}{(1-2x)^2}$; x = 0

Problem 3: Find a power series which converges only for $x \in [1, 3)$.

Problem 4: Use Taylor Series to evaluate the following:

(a) $\int \cos x^2 dx$ (b) $\int \frac{\ln(1-x)}{x} dx$ (c) $\lim_{x \to 0} \frac{1-\cos x}{1+x-e^x}$ (d) $\sum_{n=0}^{\infty} \frac{2^n}{n!}$ (e) $\lim_{x \to 0} \frac{\ln(x+1)}{x}$ (f) $\lim_{x \to 0} \frac{\sin x}{x}$ (g) $1-\ln 2 + \frac{(\ln 2)^2}{2!} - \frac{(\ln 2)^3}{3!} + \cdots$ (h) $\sum_{n=1}^{\infty} \frac{n}{2^n}$ (i) $\int \frac{dx}{x^4+1}$

(j)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$$
 (k) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$

Problem 5: Approximate the following:

- 1. $\arctan 0.5$
- **2.** ln 1.1
- 3. $\sin \frac{\pi}{4.5}$
- 4. $e^{0.1}$
- 5. $\sqrt{2.8}$