Problem 1: Convert the following points from Cartesian to polar coordinates. Plot the point in both coordinate systems.
(a) $(4,4)$
(b) $(-3,4)$
(c) $(1,-\sqrt{3})$
(d) $(4,-2)$

Problem 2: Convert the following points from polar to Cartesian coordinates. Plot the point in both coordinate systems.
(a) $\left(2, \frac{\pi}{3}\right)$
(b) $\left(4, \frac{\pi}{2}\right)$
(c) $(0, \pi)$
(d) $\left(5, \frac{5 \pi}{4}\right)$

Problem 3: Graph the following functions:
(a) $r=5 \& r=0$
(b) $r=6 \cos \theta$
(c) $r=5 \sec \theta$
(d) $r=2 \cos 4 \theta$
(e) $\theta=\frac{2 \pi}{3}$
(f) $r^{2}=2 \cos 2 \theta$
(g) $r=\frac{3}{\sin \theta}$
(h) $r=1+\cos \theta$
(i) $r=2(1+\cos \theta)$

Problem 4: Convert the following equations to polar form:
(a) $y=4$
(b) $x=2$
(c) $x^{2}+y^{2}=4$
(d) $3 x+4 x-2=0$
(e) $y=x$
(f) $x^{2}+(y-2)^{2}=1$

Problem 5: Complete the following:

1. Find the area enclosed by $r=\sqrt{\sin \theta}, 0 \leq \theta \leq \pi$.
2. Find the area enclosed by $r=2+\cos \theta$.
3. Find the area of the inner loop of $r=2+4 \cos \theta$.
4. Find the area inside of one loop of $r=\cos 3 \theta$.
5. Find the area between $r=2 \cos \theta$ and $r=1$.
6. Find the area inside of one loop of $r=\sin ^{2} \theta$.
7. Find the area inside of one loop of $r^{2}=\cos 2 \theta$.
8. Find area outside $r=2 \sin \theta$ and inside $r=2 \sin 2 \theta$.
9. Find the area inside $r=3+2 \sin \theta$ and outside $r=2$.
10. Find the area between $r=\sqrt{3} \cos \theta$ and $r=\sin \theta$.

Problem 6: Complete the following:
(a) Find the length of $r=\theta$ for $0 \leq \theta \leq 1$.
(b) Find the length of $r=1-\cos \theta$.
(c) Find the length of $r=\sqrt{1+\sin 2 \theta}$ for $0 \leq \theta \leq \pi \sqrt{2}$.

Problem 7: Complete the following:
(a) Find $\frac{d y}{d x}$ given $r=6 \sin 3 \theta$.
(b) Find $\frac{d y}{d x}$ given $r=4+3 \cos \theta$.
(c) Find the tangent line to $r=4 \cos 3 \theta$ at $\theta=\frac{\pi}{6}$.
(d) Find $\frac{d y}{d x}$ given $r=5-3 \sin 2 \theta$.
(e) Find the tangent line to $r=\theta$ at $\theta=\frac{\pi}{2}$.

