Arc Length

Set up the integrals to calculate - but do not evaluate - the following lengths:
(i) The length of the curve $y^{2}=x$ from $(0,0)$ to $(1,1)$
(ii) The length of the curve $y=\sin x$ from $(0,0)$ to $(2 \pi, 0)$
(iii) The length of the curve $x y=1$ from $(1,1)$ to $(2,1 / 2)$
(iv) The length of the curve $x^{2}+y^{2}=9$ from $(3,0)$ to $(0,-3)$
(v) The length of the curve $y^{2}=4(x+4)^{3}$ for $x \in[0,2]$ and $y>0$.
(vi) The length of the curve $x=y^{2}+3$ from $(4,-1)$ to $(4,1)$
(vii) The length of the curve

$$
\left\{\begin{array}{l}
x(t)=t^{3}+2 t+1 \\
y(t)=2 t+1
\end{array}\right.
$$

from $t=0$ to $t=1$
(viii) The length of the curve

$$
\left\{\begin{array}{l}
x(t)=2 \cos t \\
y(t)=3 \sin t
\end{array}\right.
$$

for $t=0$ to $t=2 \pi$.
(ix) The length of the curve

$$
\left\{\begin{array}{l}
x(t)=e^{-t} \\
y(t)=2 t \sin t
\end{array}\right.
$$

for $t=0$ to $t=3 \pi$.

Area between Curves

Find the area between the given curves:
(i) $f(x)=x^{2}, g(x)=0, x=-2, x=2$
(ii) $f(x)=x, g(x)=\sin x$
(iii) $f(x)=x^{2}-10, g(x)=5-2 x$
(iv) $f(x)=\sin x, g(x)=\cos x, x=0, x=2 \pi$
(v) $f(x)=\sqrt{x}, g(x)=x$
(vi) $f(x)=x^{2}, g(x)=\sqrt[3]{x}$
(vii) $f(x)=x^{3}-10 x+3, g(x)=3-3 x^{2}$
(viii) $f(x)=x^{2}, y=4, x=0$
(ix) $f(x)=\sqrt[5]{x}, x=0, y=32$
(x) $y=x-1, y^{2}=2 x+6$
(xi) $x=y^{2}-4, x=y+2$
(xii) $x=y^{3}-10 y+3, x=3-3 y^{2}$

Volume of Rotations

Set up the integral for calculating-but do not compute-the volume of rotating the given region about the given axis. Whenever possible, set up the integral for both the Shell Method and the Disk/Washer Method.
(i) $y=2 x-4, x=6, y=0$ about the x-axis
(ii) $y=2 x-4, x=6, y=0$ about the y-axis
(iii) $y=x^{2}, y=3, x=0$ about the x-axis
(iv) $y=x^{2}, y=3, x=0$, about the y-axis
(v) $y=\sqrt[3]{x}, y=x / 4$, about the x-axis
(vi) $y=\sqrt[3]{x}, y=x / 4$, about the line $x=6$
(vii) $y=\sqrt[3]{x}, y=x / 4$, about the line $x=-5$
(viii) $y=\sqrt{x-1}, y=(x-1)^{2}$ about the line $y=7$
(ix) $y=\sqrt{x-1}, y=(x-1)^{2}$ about the line $y=-5$
(x) $y=\sqrt{x-1}, y=(x-1)^{2}$ about the line $x=7$
(xi) $y=\sqrt{x-1}, y=(x-1)^{2}$ about the line $x=-4$

Volume by Cross Sections

(i) The base of a solid has boundary given by the curves $f(x)=x^{2}-1$ and $g(x)=1-x^{2}$. The cross sections perpendicular to the x-axis are equilateral triangles. Find the volume of the solid.
(ii) The base of a solid has boundary given by the curves $f(x)=x^{2}-1$ and $g(x)=1-x^{2}$. The cross sections perpendicular to the x-axis are semicircles. Find the volume of the solid.
(iii) Find the volume of a solid pyramid with square base that is 5 units tall and 20 units on the side.
(iv) A regular cone has a base that is 4 units across and 5 units tall. Find the volume of the cone.
(v) The base of a solid has boundary given by $y=4-x^{2} / 9$ and $y=0$. Cross sections perpendicular to the x-axis are rectangles with heights twice the length of the side lying in the plane. Find the volume of this solid.
(vi) The base of a solid has boundary given by $y=\sqrt{4-x^{2}}$ and $y=0$. Cross sections parallel to the x-axis are squares. Find the volume of the solid.
(vii) The base of a solid has boundary given by the ellipse $4 x^{2}+9 y^{2}=9$. Cross sections perpendicular to the x-axis are isosceles right triangles with the hypotenuse lying in the plane. Find the volume of the solid.
(viii) The base of a solid has boundary given by $x^{2}+y^{2}=4$. The cross sections perpendicular to the x-axis are equilateral triangles. Find the volume of the solid.
(ix) The base of a solid is given by the curve $y=\sin x$ from 0 to π and the curve $y=0$. Cross sections perpendicular to the x-axis are semicircles. Find the volume of the solid.
(x) The base of a solid is given by the curves $y=\sqrt{x}$ and $y=x^{2}$. Slices perpendicular to the y-axis are rectangles with height a third the length of the side lying in the plane. Find the volume of the solid.

