
MAT 222 — Spring 2017

Pooled t-Tests

Background

Recall when wanting to compare two means, µ1, µ2, we look at their difference: µ1 − µ2. The sign
of this difference gives us some information:

µ1 − µ2 > 0, µ1 is greater than µ2
µ1 − µ2 = 0, µ1 is equal to µ2
µ1 − µ2 < 0, µ1 is less than µ2

Of course, the greater the magnitude of µ1 − µ2, the more µ1 is greater/less than µ2. For example,
suppose we wanted to test the effectiveness of a new medication for those with chronic high blood
pressure. If people taking the medication have an average lower blood pressure than those that do
not take the medication, we could claim that the medication is effective. Notice that this is exactly
comparing µ1 with µ2 – the average blood pressure of those on the medication to those not on the
medication. To compare these averages, we examine µ1 − µ2. If µ1 − µ2 > 0, i.e. µ1 > µ2, then
we might think the medication somehow increases blood pressure. If µ1 − µ2 = 0, i.e. µ1 = µ2, we
might think the medication has no effect. While if µ1 − µ2 < 0, i.e. µ1 < µ2, we might think that
the medication decreases blood pressure. However, there is an issue. We do not know µ1, µ2! So
how are we to compare two unknown means?

We could create a simple random sample of individuals, one group which would receive the
medication and one which would receive a placebo. Call the individuals receiving the medication
Group 1 and the individuals which receive the placebo Group 2. Now call the average blood
pressure of those in Group 1 (those on the medication) x1 and call the average blood pressure of
those in Group 2 (those on the placebo) x2. So we have ‘guesses’ for µ1, µ2, the means from our
groups, x1 and x2, respectively. This gives us an approximation for µ1 − µ2, namely x1 − x2.

We can now test the hypothesis that H0 : µ1 = µ2 (the medication has no effect) against
the hypothesis Ha : µ1 < µ2 (the medication reduces blood pressure). Assuming that the blood
pressure of those on the medication has the N(µ1, σ1) distribution, i.e. normal distribution with
mean µ1 and standard deviation σ1 and the blood pressure of those on the placebo has theN(µ2, σ2)
distribution, the (two–sample) z statistic

z =
(x1 − x2)− (µ1 − µ2)√

σ21
n1

+
σ22
n2

=
x1 − x2√
σ21
n1

+
σ22
n2

where n1 is the number of individuals in Group 1 and n2 is the number of people in Group 2 (notice
µ1 − µ2 = 0 as µ1 = µ2 by the null hypothesis). But again, we have a problem. We do not know
σ1 and σ2. Again, we approximate σ1, σ2 using our samples. Approximate the standard deviation
of Group 1, σ1, by the standard deviation of Group 1 (call this s1). Approximate the standard
deviation of Group 2, σ2, by the standard deviation of Group 2 (call this s2). This gives us the
two–sample t statistic:

t =
x1 − x2√
s21
n1

+
s22
n2
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This is a bit misnamed as this statistic does not have a t–distribution. But we can still approximate
this distribution by using a t–distribution with degrees of freedom equal to the smallest of the
samples degrees of freedom. For instance, if we used a sample of 20 people for Group 1, i.e.
n1 = 20, and a sample of 17 people for Group 2, i.e. n2 = 17, then the degrees of freedom for our
‘t–distribution’ above would use the group of size 17 to get degrees of freedom 16.

This method allows us to make hypothesis test comparisons of two means as well as build
confidence intervals for the difference of the two means. There are better approximations when
we have more information about the standard deviations of the original samples. Notice above we
did not know µ1, µ2 (then again we never do know this for hypothesis testing, this is the point of
hypothesis testing) and we did not know σ1, σ2. However, if we knew more about σ1, σ2, we could
create a better approximation for this distribution. This is exactly the idea of a pooled two–sample
t statistic.

Pooled t–Procedures

Again consider the situation of the previous section, where we have two normal distributions:
N(µ1, σ1) and N(µ2, σ2), again with µ1, µ2, σ1, σ2 all unknown. If we knew more about σ1, σ2, we
could create more accurate predictions about µ1−µ2. After all, the more information, the more you
can say! Suppose that there is reason to believe σ1 is approximately σ2 or better yet that σ1 = σ2.
Then there is no need to distinguish between σ1, σ2 because they are the same! This allows us to
give σ1, σ2 a single ‘name’, say σ. By mathematical nonsense, the variance of µ1 − µ2 is

σ21
n1

+
σ22
n2

=
σ2

n1
+
σ2

n2
= σ2

(
1

n1
+

1

n2

)
Taking the square root gives us the standard deviation for µ1 − µ2 as√

σ2
(

1

n1
+

1

n2

)
= σ

√
1

n1
+

1

n2

Now we may know that σ1 ≈ σ2 or σ1 = σ2, but we still do not know what this common value is!
Once again, we will have to approximate σ.

Now both the standard deviation of Group 1, s1, and the standard deviation of Group 2, s2,
approximate σ (since they both approximate σ1, σ2, which are both equal to σ). We can then
‘average’ s1, s2 to get a better approximation of σ. However, there is an issue (though at this stage
are we really surprised there is a problem!?). Group 1 and Group 2 have different sizes so a simple
average will not do. For instance, if 10,000 people voted for a tax rate of 9% but another 500
people voted for a tax rate of 11%, you would not implement a tax rate of 10% to be ‘fair’ – far
more people voted for the 9% rate. You need to take into account the sample sizes. This is exactly
why we cannot simply average s1, s2. Instead, we pool the samples together and average them by
their ‘weight’. [This is why it is called a pooled t–procedure.]

To see how this is done, take the sample of the voting again. Instead of thinking of these
individuals as belong to the 9% or 11% groups, we pool them together into one large group of
people that voted for one tax rate or the other. Now 10,000 people voted for the 9% rate and 500
for the 11% rate, making 10,500 total people in our sample. Recalling that an average is the sum
of the values divided by the total number of values, this would (normally) give us

10, 000 · 9 + 500 · 11
10000 + 500
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But we are estimating variances and standard deviations, where we ‘remove an individual’ (recall
in the formula for standard deviation, it is n − 1 not n). So removing an individual from each of
the groups gives 9,999 people for the 9% tax rate and 499 people for the 11% tax rate. This makes
for a total of 9, 999+ 499 = 10, 498 total individuals (note this is the same as 10, 500− 2). Then our
weighting is

9, 999 · 9% + 499 · 11%
10, 500− 2

= 9.095%

Now applying this same idea to the variances s21, s
2
2, this gives us an ‘average’, which we shall call

s2p for the pooled standard deviation,

s2p =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2

To find our new approximation for the standard deviation, sp, one only need take the square

root. So instead of using

√
s21
n1

+
s22
n2

for the standard deviation as we did before, we have a better

approximation:

sp

√
1

n1
+

1

n2

Again, we use the t–distribution. The degrees of freedom is n1 + n2 − 2 – the ‘denominator’ in sp
(we do not need to subtract one from this since we already have from each group to obtain this
number).

This finally gives us a confidence interval formula for µ1 − µ2 and

(x1 − x2)± t∗sp
√

1

n1
+

1

n2

and (pooled two–sample) t statistic

t =
x1 − x2

sp

√
1

n1
+

1

n2

A Few Things to Note

• Notice just as for the two–sample t procedure, σ1, σ2 must be unknown. However unlike the
two–sample t procedure, we need to know σ1, σ2 are equal or approximately equal.

• Since the standard deviations are unknown, pooled two–sample t procedures can be risky as
one does not know for sure that the unknown standard deviations are equal or approximately
equal.

• Just like the two–sample t procedure for our approximations to work, we need. . .
n1 + n2 < 15, data close to normal.
15 ≤ n1 + n2 < 40, anytime except in case of outliers or strong skewness.
40 ≤ n1 + n2, anytime, even in presence of outliers or strong skewness.
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• The pooled two–sample t procedures are fairly robust against non–normality and unequal
standard deviations (when the sample sizes are large). When the same sizes n1, n2 are very
different in size, the pooled two–sample t procedures become very sensitive to unequal stan-
dard deviations. In this case, pooled t procedures should only be used if the sample sizes are
large.

Example

A cellphone company has created a new battery design to compete with a rival company whose
phones have longer battery life than their previous model phones. To examine this, the company’s
engineers test 16 of their new batteries and find a mean of 11.2 hours with standard deviation 2.3
and 13 of their competitor’s batteries and find an average battery life of 10.8 hours with standard
deviation 2.5. Assuming that the average battery life for both phones is normally distributed with
equal standard deviations (since they use a similar design).

(a) Find a 90% confidence interval for the difference in average battery life.

(b) Find the t statistic and p–value for hypothesis that these engineers have designed a battery
with longer battery life than their competitor.

(c) State your conclusion at the α = 0.05 level.

Solution: Throughout, let x1, s1 denote the mean and standard deviation for the engineers’ new
battery, respectively, and x2, s2 denote the mean and standard deviation for the competitor’s battery,
respectively. Let n1, n2 denote the corresponding sample sizes. We need to use a t–procedure since
the standard deviations of the populations are unknown (though we do know the sample standard
deviations) and the original distributions are normal (so the size of n1 + n2 does not matter). We
use a pooled t procedure because we believe the standard deviation for the two batteries is equal.

(a) The confidence interval is given by the values

(x1 − x2)± t∗sp
√

1

n1
+

1

n2

We need only find the individual variables. First, x1 − x2 = 11.2 − 10.8 = 0.4. The degrees of
freedom here is n1 + n2 − 2 = 16 + 13− 2 = 27. Since we are using a 90% confidence interval
(with degrees of freedom 27), we have t∗ = 1.703. Furthermore,√

1

n1
+

1

n2
=

√
1

16
+

1

13
=
√
0.139423 = 0.373

s2p =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
=

(16− 1)2.32 + (13− 1)2.52

16 + 13− 2
=

154.35

27
= 5.717

so that sp =
√
5.717 = 2.391. Then. . .

(x1 − x2)± t∗sp
√

1

n1
+

1

n2
= 0.4± 1.703(2.391)0.373 = 0.4± 1.52

Therefore, we are 90% certain that the difference in battery life of the phones, µ1 − µ2, is be-
tween −1.12 and 1.92 hours, i.e.. there is a 90% the difference in battery life is in the interval
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[−1.12, 1.92]. Put another way, there is a 90% chance that on average the company’s battery
last about 1 hour and 15 minutes less to approximately 2 hours longer than their competitor’s
battery.

(b) We are testing: {
H0 : µ1 = µ2

Ha : µ1 > µ2

To calculate the t statistics, we already have calculated all the necessary values:

t =
x1 − x2

sp

√
1

n1
+

1

n2

=
0.4

2.391(0.373)
= 0.449

Using the t table with degrees of freedom 27, this gives p–value greater than 0.25. [In fact, the
exact p–value is 0.6715.]

(c) Since α = 0.05 and p ≥ 0.25, there is not enough evidence to suggest that the new battery has
a longer battery life than their competitors battery.
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