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1. (a) Given the vectors u and v below, sketch u + v and v − u.

u
v

u

v

u + v

u

v

v − u
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Let a = 2 ı̂− ̂ + 3 k̂ and b = ı̂− k̂.

(b) Find 2b− a.

2b− a = 2〈1, 0,−1〉 − 〈2,−1, 3〉 = 〈2, 0,−2〉 − 〈2,−1, 3〉 = 〈0, 1,−5〉

(c) Find a unit vector in the direction of a.

a

|a|
=
〈2,−1, 3〉
|〈2,−1, 3〉|

=
〈2,−1, 3〉√

22 + (−1)2 + 32
=
〈2,−1, 3〉√

14
=

〈
2√
14
,
−1√
14
,

3√
14

〉

(d) Find the angle between a and b.

We know that a · b = |a| |b| cos θ. Now

|a| =
√

22 + (−1)2 + 32 =
√
4 + 1 + 9 =

√
14

|b| =
√

12 + 02 + (−1)2 =
√
1 + 0 + 1 =

√
2

a · b = 2(1) + (−1)0 + 3(−1) = 2 + 0− 3 = −1

But then this gives that

θ = cos−1
(
−1√
14
√
2

)
= cos−1

(
−1√
28

)

(e) Are a and b orthogonal? Justify your answer.

We know that a and b are orthogonal if and only if a · b = 0. But from (d), we
know that a · b = −1 6= 0 so that a and b are not orthogonal.
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2. Let a = 2 ı̂− ̂ + 3 k̂ and b = ı̂− k̂.

(a) Find a vector perpendicular to both a and b.

a× b =

∣∣∣∣∣∣
ı̂ ̂ k̂
2 −1 3
1 0 −1

∣∣∣∣∣∣ = ı̂ ((−1)(−1)− 3(0))− ̂ (2(−1)− 3(1)) + k̂ (2(0)− 1(−1))

= ı̂ + 5 ̂ + k̂

= 〈1, 5, 1〉

(b) Find the area of the parallelogram spanned by a and b.

|a× b| = |〈1, 5, 1〉| =
√
12 + 52 + 12 =

√
27 = 3

√
3

(c) Find the volume of the parallelepiped generated by the vectors a, b, and c =
〈1,−1, 4〉.

One can use the scalar triple product∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ =
∣∣∣∣∣∣

2 −1 3
1 0 −1
1 −1 4

∣∣∣∣∣∣ = 0

or one could use the equivalent (and via (a) more convenient)

|c · (a× b)| = |〈1,−1, 4〉 · 〈1, 5, 1〉| = |1(1) + (−1)5 + 4(1)| = |1− 5 + 4| = 0

(d) Are a, b, and c coplanar?

From part (c), we know that the volume of the parallelepiped spanned by a, b, and
c is 0 which happens if and only if the parallelepiped is ‘flat’, i.e. a, b, and c are
coplanar.
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3. Let P (4,−6, 4), Q(7,−5, 3), and R(8,−3, 2) be points in R3.

(a) Find the equation of the line through Q and R.

QR = 〈8,−3, 2〉 − 〈7,−5, 3〉 = 〈1, 2,−1〉

Then one possible solution to give the line is

l(t) = (1, 2,−1)t+ (7,−5, 3)
= (t, 2t,−t) + (7,−5, 3)
= (t+ 7, 2t− 5, 3− t)

Using the point R instead, one obtains another possibility, namely l(t) = (t+8, 2t−
3, 2− t).

(b) Find the equation of the plane perpendicular to the line from (a) and containing
the point P .

Because the line from (a) is perpendicular to the plane, the direction vector for the
line must be parallel to a normal vector for the plane. The plane contains the point
P (4,−6, 4). Therefore, the equation of the plane is

〈1, 2,−1〉 · 〈x− 4, y − (−6), z − 4〉 = 0

1(x− 4) + 2(y + 6)− (z − 4) = 0

x− 4 + 2y + 12− z + 4 = 0

x+ 2y − z = −12

(c) Find the distance from the point P to the line from (a).

The point Q is on the line from (a). Form the vector PQ = 〈7,−5, 3〉 − 〈4,−6, 4〉 =
〈3, 1,−1〉. Now we project onto the direction vector for the line

proj〈1,2,−1〉〈3, 1,−1〉 =
〈1, 2,−1〉 · 〈3, 1,−1〉
〈1, 2,−1〉 · 〈1, 2,−1〉

〈1, 2,−1〉 = 6

6
〈1, 2,−1〉 = 〈1, 2,−1〉

But then the distance is

|〈3, 1,−1〉 − 〈1, 2,−1〉| = |〈2,−1, 0〉| =
√

22 + (−1)2 + 02 =
√
5
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4. Let f(x, y, z) =
2x+ ye3y − z

x
.

(a) Find the equation of the tangent plane to f(x, y, z) at the point (1, 0,−1).

∇f = 〈fx, fy, fz〉 =
〈
x(2)− (2x+ ye3y − z)

x2
,
1

x
(e3y + 3ye3y),

−1
x

〉
=

〈
z − ye3y

x2
,
e3y(1 + 3y)

x
,
−1
x

〉

∇f(1, 0,−1) =
〈
−1− 0e0

12
,
e0(1 + 3(0))

1
,
−1
1

〉
= 〈−1, 1,−1〉

Then the equation of the plane is

〈−1, 1,−1〉 · 〈x− 1, y − 0, z − (−1)〉 = 0

−1(x− 1) + 1(y − 0)− 1(z + 1) = 0

−x+ 1 + y − z − 1 = 0

y − x− z = 0

(b) Find fxy.

fxy = fyx =
∂

∂x
(fy) =

∂

∂y

(
e3y(1 + 3y)

x

)
=
−e3y(1 + 3y)

x2

(c) Find
∂2f

∂y∂z
.

∂2

∂y∂z
=

∂

∂y

(
∂f

∂z

)
=

∂

∂y

(
−1
x

)
= 0
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5. Let f(x, y, z) = ex
2+y2+z2.

(a) Find the rate of change of f(x, y, z) in the direction of u = −̂ı+ ̂− k̂ at the point
(0, 2,−1).

∇f =
〈
2xex

2+y2+z2 , 2yex
2+y2+z2 , 2zex

2+y2+z2
〉

∇f(0, 2,−1) =
〈
2(0)e0

2+22+(−1)2 , 2(2)e0
2+22+(−1)2 , 2(−1)e02+22+(−1)2

〉
= 〈0, 4e5,−2e5〉

∇f(0, 2,−1) · u

|u|
= 〈0, 4e5,−2e5〉 · 〈−1, 1,−1〉√

(−1)2 + 12 + (−1)2
=

6e5√
3
= 2
√
3e5

(b) What is the direction of maximum increase for the function f(x, y, z) at the point
(0, 2,−1)? What is the direction of maximum decrease for the function f(x, y, z)
at the point (0, 2,−1)?

The direction of maximum increase is 〈0, 4e5,−2e5〉 while the rate of maximum
decrease is −〈0, 4e5,−2e5〉 = 〈0,−4e5, 2e5〉. Note that since 〈0, 2,−1〉 and 〈0,−2, 1〉
point in the same direction as the given vectors, respectively, these can equally be
given as the direction of maximum increase/decrease, respectively.

(c) Find the rate of change for f(x, y, z) at the directions you found in (b).

The rate of maximum increase is

|〈0, 4e5,−2e5〉| =
√

02 + (4e5)2 + (−2e5)2 =
√
20e10 = 2e5

√
5

while the rate of maximum decrease is

−|〈0, 4e5,−2e5〉| = −
√
02 + (4e5)2 + (−2e5)2 = −

√
20e10 = −2e5

√
5
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6. Choose either (a) or (b) to complete. You do not need to do both. Choose only of of the
two and complete it.

(a) Find and classify the critical points for the function f(x, y, z) = ez(z2 − y2 − 2x2).

(b) Find the maximum and minimum values of F (x, y, z) = 2x3 + y3 + 2z3/2 if x, y,
and z satisfy x4+ y4+ z2 = 33 and xyz 6= 0. [Note: xyz 6= 0 simply says that none
of x, y, or z are zero.]

(a) We have 
fx = −4xez

fy = −2yez

fz = ez(z2 − z2 − x2) + 2zez = ez(z2 + 2z − 2x2 − y2)

Setting fx = 0 gives −4xez = 0 which implies ez = 0, impossible, or −4x = 0 so
that x = 0. Setting fy = 0 yields −2yez = 0 so that ez = 0, impossible, or −2y = 0
so that y = 0. Finally, setting fz = 0 implies that (using the fact that x = y = 0)
ez(z2 + 2z − 2x2 − y2) = ez(z2 + 2z) = ezz(z + 2) = 0, which implies ez = 0,
impossible, z = 0, or z + 2 = 0 so that z = −2. Therefore, we have two critical
points: (0, 0, 0) and (0, 0,−2). The Hessian isfxx fxy fxz

fyx fyy fyz
fzx fzy fzz

 =

 −4ez 0 −4xez
0 −2ez −2yez

−4xez −2yez ez(2− 2x2 − y2 + 4z + z2)


At the point (0, 0, 0), the Hessian is−4 0 0

0 −2 0
0 0 2


Then d1 = −4 < 0, d2 = (−4)(−2) = 8 > 0, and d3 = (−4)(−2)(2) = 16 > 0 so
that (0, 0, 0) is a saddle. At the point (0, 0,−2), the Hessian is−4e

2 0 0
0 −2e2 0

0 0 − 2

e2


Then d1 = −4e2 < 0, d2 = (−4e2)(−2e2) = 8e4 > 0, and d3 = (−4e2)(−2e2)(−2e−2) =
−16e2 < 0 so that (0, 0,−2) is a maximum.
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(b) Let G(x, y, z) = x4 + y4 + z2 − 33. We have

∇F = 〈6x2, 3y2, 3z1/2〉
∇G = 〈4x3, 4y3, 2z〉

Lagrange’s Theorem tells us there is a λ 6= 0 such that ∇F = λ∇G. This gives the
system of equations 

6x2 = 4λx3

3y2 = 4λy3

3z1/2 = 2λz

Now x, y, z 6= 0 so that this is equivalent to
3 = 2λx

3 = 4λy

3 = 2λz1/2

But then we have
λ =

3

2x
=

3

4y
=

3

2z1/2

The second and third equalities give
3

2x
=

3

4y
so that x = 2y. The third and fourth

equalities give
3

4y
=

3

2z1/2
so that z1/2 = 2y = x which also implies z = 4y2. But

then

33 = x4 + y4 + z2 = (2y)4 + y4 + (4y2)2 = 16y4 + y2 + 16y4 = 33y4

So that y4 = 1 and therefore y = ±1. If y = 1 then x = 2 and z = 4, giving the point
(2, 1, 4). If y = −1, we have x = −2 and z = 4 giving the point (−2,−1, 4). Then
as F (2, 1, 4) = 33 and F (−2,−1, 4) = −1, F (2, 1, 4) = 33 is the maximum value
and F (−2,−1, 4) = −1 is the minimum value for F (x, y, z) given the constraints
G(x, y, z) = 0 and xyz 6= 0.
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7. Complete the following parts:

(a) Compute the following integral:

ˆ 3

0

ˆ 9−x2

0

xe3y

9− y
dy dx

−1 1 2 3 4

2

4

6

8

10

x

y

The region, shown above, has boundary curves given by x = 0, y = 0, and y =
9 − x2. Note that if y = 9 − x2 then x = ±

√
9− y but as x ≥ 0 in our region, we

have x =
√
9− y. Then we have

ˆ 3

0

ˆ 9−y2

0

xe3y

9− y
dy dx =

ˆ 9

0

ˆ √9−y
0

xe3y

9− y
dx dy

=

ˆ 9

0

x2e3y

2(9− y)

∣∣∣∣x=
√
9−y

x=0

dy

=
1

2

ˆ 9

0

e3y dy

=
1

2
· e

3y

3

∣∣∣∣y=9

y=0

=
1

6
· e3y

∣∣∣∣y=9

y=0

=
e27 − 1

6
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(b) Set up completely as possible but do not integrate any integral which would com-
pute the volume of the region enclosed by y = x2 + z2 and y = 8− x2 − z2.

Note that these surfaces are both paraboloids. They intersect at x2+z2 = 8−x2−z2
which implies 2x2 + 2z2 = 8 so that x2 + z2 = 4, which is a circle in the xz–plane of
radius 2.

V =

˚
R

dV =

ˆ 2

−2

ˆ √4−z2
−
√
4−z2

ˆ 8−x2−z2

x2+z2
dy dx dz
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8. Complete the following parts:

(a) Change the integral given below into an integral in polar coordinates. Be sure to
set up the integral completely as possible but do not evaluate the integral.

¨
R

cos(x2 + y2) dA

The region R is the shaded region portion of the unit circle in the figure below:

y =
√
3 x

x

y

Note that since we have a unit circle, 0 ≤ r ≤ 1. Clearly, the terminal θ is π.
We only need the initial angle, θ0. However, we know that a point on the circle is
(r cos θ, r sin θ), which for this circle is (cos θ, sin θ). Then we know at the farthest
most right point is the point (x, y) = (x,

√
3x) = (cos θ0, sin θ0). But x2 + y2 = 1

so that x2 + 3x2 = 1 so that x = 1/2. But 1/2 = x = cos θ0 so that θ0 = π
6
. Alter-

natively, observe the initial angle is given by θ0 = arctan(y/x) = arctan(
√
3x/x) =

arctan(
√
3) = π

6
. Then we have

ˆ π

π/6

ˆ 1

0

r cos r2 dr dθ
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(b) Change the integral given below into an integral in cylindrical coordinates. Be
sure to set up the integral completely as possible but do not evaluate the integral.

˚
R

(
2 +

√
x2 + y2

)
dV

The region R is given by R =
{
(x, y, z) :

√
x2 + y2 ≤ z

2
≤ 3
}

.

Observe
√
x2 + y2 ≤ z

2
≤ 3 implies that 2

√
x2 + y2 ≤ z ≤ 3. Then the ‘top’ of the

region is z = 3 and the ‘side’ of the region is z2 = 4(x2+y2). But then 9 = 4(x2+y2)
so that x2 + y2 = 9

4
. But then the integral is

ˆ 2π

0

ˆ 3/2

0

ˆ 3

2
√
r2

(
2 +
√
r2
)
r dz dr dθ =

ˆ 2π

0

ˆ 3/2

0

ˆ 3

2r

(2r + r2) dz dr dθ

(c) Change the integral given below into an integral in spherical coordinates. Be sure
to set up the integral completely as possible but do not evaluate the integral.

˚
R

y√
x2 + y2 + z2

dV

The region R is the collection of points between the spheres x2 + y2 + z2 = 1 and
x2 + y2 + z2 = 4, where y > 0 and z > 0.

ˆ π/2

0

ˆ π

0

ˆ 2

1

ρ sinφ sin θ√
ρ2

· ρ2 sinφ dρ dθ dφ =

ˆ π/2

0

ˆ π

0

ˆ 2

1

ρ2 sin2 φ sin θ dρ dθ dφ
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9. Let C be the directed line segment from the point (−2, 1) to the point (1, 3).

(a) Compute
ˆ
C

(x+ 2y) dx.

We have r(t) = (−2, 1)(1 − t) + (1, 3)t = (3t − 2, 2t + 1) for 0 ≤ t ≤ 1 so that
x = 3t − 2, dx = 3 dt, and y = 2t + 1. Then x + 2y = (3t − 2) + 2(2t + 1) = 7t.
Therefore, ˆ

C

(x+ 2y) dx =

ˆ 1

0

7t · 3 dt = 21

ˆ 1

0

t dt =
21

2

(b) Compute
ˆ
C

(x+ 2y) dy.

We have r(t) = (−2, 1)(1 − t) + (1, 3)t = (3t − 2, 2t + 1) for 0 ≤ t ≤ 1 so that
x = 3t − 2, y = 2t + 1, and dy = 2 dt. Then x + 2y = (3t − 2) + 2(2t + 1) = 7t.
Therefore, ˆ

C

(x+ 2y) dy =

ˆ 1

0

7t · 2 dt = 14

ˆ 1

0

t dt = 7

(c) Compute
ˆ
C

(x+ 2y) ds

We have r(t) = (−2, 1)(1 − t) + (1, 3)t = (3t − 2, 2t + 1) for 0 ≤ t ≤ 1 so that
x = 3t− 2, dx = 3 dt, y = 2t+1, and dy = 2 dt so that ds =

√
32 + 22 =

√
13. Then

x+ 2y = (3t− 2) + 2(2t+ 1) = 7t. Therefore,

ˆ
C

(x+ 2y) ds =

ˆ 1

0

7t ·
√
13 dt = 7

√
13

ˆ 1

0

t dt =
7
√
13

2
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10. Complete the following parts:

(a) Compute ˆ
C

F · dr

where F = x ı̂ + y ̂ + z k̂ and r(t) = (t, 3t2, 2t3) for 0 ≤ t ≤ 1.

We have F(r(t)) = 〈t, 3t2, 2t3〉 and r′(t) = 〈1, 6t, 6t2〉. Therefore,
ˆ
C

F · dr =

ˆ 1

0

〈t, 3t2, 2t3〉 · 〈1, 6t, 6t2〉 dt

=

ˆ 1

0

t+ 18t3 + 12t5 dt

=

(
t2

2
+

18t4

4
+

12t6

6

) ∣∣∣∣t=1

t=0

=
1

2
+

18

4
+

12

6

=
1

2
+

9

2
+ 2

= 7

(b) Compute ˛
C

−y dx+ x dy

where C is the circle of radius 3 centered at the origin, oriented counterclockwise.

The circle can be parametrized by r(t) = (3 cos t, 3 sin t) for 0 ≤ t ≤ 2π. Therefore,
x = 3 cos t, dx = −3 sin t dt, y = 3 sin t, and dy = 3 cos t dt. Then we have

˛
C

−y dx+ x dy =

ˆ 2π

0

−3 sin t · −3 sin t dt+ 3 cos t · 3 cos t dt

=

ˆ 2π

0

9 sin2 t+ 9 cos2 t dt

= 9

ˆ 2π

0

dt

= 18π
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11. Let F = (2xy + 1) ı̂ + (x2 − 1) ̂.

(a) Compute div F.

div F =
∂

∂x
(2xy + 1) +

∂

∂y
(x2 − 1) = 2y + 0 = 2y

(b) Use the curl to show that F is conservative.

∇× F =

∣∣∣∣∣∣∣∣
ı̂ ̂ k̂
∂

∂x

∂

∂y

∂

∂z
2xy + 1 x2 − 1 0

∣∣∣∣∣∣∣∣
= ı̂

(
∂

∂y
(0)− ∂

∂z
(x2 − 1)

)
− ̂

(
∂

∂x
(0)− ∂

∂z
(2xy + 1)

)
+ k̂

(
∂

∂x
(x2 − 1)− ∂

∂y
(2xy + 1)

)
= ı̂ (0− 0)− ̂ (0− 0) + k̂ (2x− 2x)

= 〈0, 0, 0〉
= 0

Because F is clearly C2 on R2, which is simply connected, ‘∇× F = 0’ implies that
F is conservative.
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(c) Find a potential function for F.

If F = ∇f , then F = 〈fx, fy〉 so that fx = 2xy + 1 and fy = x2 − 1. But then

f(x, y) =

ˆ
fx dx =

ˆ
(2xy + 1) dx = x2y + x+ C(y)

where C(y) is a function of y alone. But then we must have

x2 − 1 = fy =
∂

∂y
(x2y + x+ C(y)) = x2 + C ′(y)

which implies that C ′(y) = −1 so that C(y) = −y+C, where C is some constant of
integration. Therefore, f(x, y) = x2y + x− y + C is a potential function for F.

(d) Compute
ˆ
C

F · dr, where C : [0, 1]→ R2 is the path given by

r(t) =

(
et

2−t + sin

(
π cos

(
πt

2

))
+ 2t,

1

t2 + 2t− 4
− sin(πt) +

1− t
4

)
Because we know that F is conservative, we know that

ˆ
C

F · dr =

ˆ
C

∇f · dr = f(r(1))− f(r(0))

Now r(1) = (3,−1) and r(0) = (1, 0) so that
ˆ
C

F · dr = f(3,−1)− f(1, 0) = (32(−1) + 3− (−1) + C)− (12(0) + 1− 0 + C)

= −9 + 3 + 1 + C − 0− 1 + 0− C
= −6
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12. Compute ˛
C

(xy2 + 2y3 + y) dx+ (x2y + 6xy2 + 10x) dy

where C is the boundary of the square, oriented counterclockwise, shown below

−1 1

−1

1

x

y

Let R denote the square indicated by the figure. The boundary of this square, ∂R, is a
simple closed curve that is piecewise smooth so that Green’s Theorem applies. Therefore,

˛
C

(xy2 + 2y3 + y) dx+ (x2y + 6xy2 + 10x) dy =
¨
R

∂

∂x
(x2y + 6xy2 + 10x)− ∂

∂y
(xy2 + 2y3 + y) dA =

¨
R

(2xy + 6y2 + 10)− (2xy + 6y2 + 1) dA =

9

¨
R

dA = 9 · Area(R) = 9 ·
(√

12 + 12
)2

= 18
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Bonus 1: Suppose S is the surface consisting of 214,252 polygons that are smoothly
connected to form the visage of the scientist Rick Sanchez—also known as Pickle Rick,
where the equation of the base of the neck (highlighted on the surface in dark black)
is the circle 4x2 + 4y2 = 9 in the plane z = 47 (see the figures below).1

If F = (x− 2y) ı̂ + (2x− y) ̂ + (xz + yz − x sin(yz)) k̂, calculate
¨
S

∇× F · dS

Be sure to justify all steps in your calculations and any theorems used thoroughly.

Observe that S and F satisfy the conditions for Stokes’ Theorem. Then by the theorem,
we have ¨

S

∇× F · dS =

˛
∂S

F · dS

But then by Stokes’ Theorem, the given surface integral must be equal to˛
∂S′

F · dS′ for any surface S ′, which satisfies the conditions for Stokes’ Theorem, such

that ∂S = ∂S ′. Observe that the disk D = {(x, y, z) : 4x2 + 4y2 = 9, z = 47} satisfies this
condition (its boundary is clearly the given circle at z = 47). We calculate the integral
for this surface instead, i.e. S ′ = D. Now parametrize the boundary of this disk by
r(t) =

(
3
2
cos t, 3

2
sin t, 47

)
for 0 ≤ t ≤ 2π. Then r′(t) =

〈
−3

2
sin t, 3

2
cos t, 0

〉
. Write F as

1 ChaosCoreTech. 2017, July. Rick Sanchez [Rick and Morty]. https://pinshape.com/items/33235-3d-printed-rick-sanchez-rick-
and-morty.
Rick and Morty. Warner Bros. Television. Warner Bros. Television Distribution. July 2017. Television.
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F = 〈M(x, y, z), N(x, y, z), P (x, y, z)〉. Then we have
ˆ
S

∇× F · dS =

¨
S′
∇× F · dS′

=

˛
∂S′

F · dS′

=

ˆ 2π

0

〈M(r(t)), N(r(t)), P (r(t))〉 ·
〈
−3

2
sin t,

3

2
cos t, 0

〉
dt

=

ˆ 2π

0

(
3

2
cos t− 2 · 3

2
sin t

)(
−3

2
sin t

)
+(

2 · 3
2
cos t− 3

2
sin t

)(
3

2
cos t

)
+ 0 dt

=
9

2

ˆ 2π

0

cos2 t+ sin2 t− 9 sin t cos t dt

=
9

2

ˆ 2π

0

dt+
9

2

ˆ 2π

0

sin 2t

2
dt

=
9

2
· 2π + 0

= 9π



Math 397: Exam 3 21 of 22

Bonus 2: Verify the Divergence Theorem for the vector field F = x ı̂ + y ̂ + z k̂ over
the sphere S of radius R centered at the origin, i.e. x2 + y2 + z2 = R2.

Because the solid sphere, which we shall denote as R, is a bounded solid region in R3

whose boundary is smooth, closed, and orientable and F is C∞ on R3, the Divergence
Theorem/Gauss’ Theorem applies so that

‹
S

F · dS =

˚
R

∇ · F dV

To verify, we compute both integrals. We begin with the left integral. Parametrize the
sphere by

X(s, t) = (R cos s sin t, R sin s sin t, R cos t)

for 0 ≤ s ≤ 2π and 0 ≤ t ≤ π. Then we have

Ts = 〈−R sin s sin t, R cos s sin t, 0〉
Tt = 〈R cos s cos t, R sin s sin t,−R cos t〉

Then N(s, t) = Ts × Tt = −R2 sin t〈cos s sin t, sin s sin t, cos t〉. But this vector points
inwards so we must negate the product. Then

¨
S

F · dS =

ˆ π

0

ˆ 2π

0

〈R cos s sin t, R sin s sin t, R cos t〉

· (R2 sin t〈cos s sin t, sin s sin t, cos t〉) ds dt

= R3

ˆ π

0

ˆ 2π

0

sin t(cos2 s sin2 t+ sin2 s sin2 t+ cos2 t) ds dt

= R3

ˆ π

0

ˆ 2π

0

sin t ds dt

= 2πR3

ˆ π

0

sin t dt

= 4πR3
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Note that one could also use¨
S

F · dS =

¨
R

F(X(s, t)) ·N(s, t) ds dt

=

¨
R

F(X(s, t)) · (‖N(s, t)‖n(s, t)) ds dt

=

¨
S

(F · n) dS

where n is the unit outward normal. Then use the fact that the sphere has unit outward

normal n =
〈x, y, z〉
R

so that on S we have F ·n =
x2 + y2 + z2

R
=
R2

R
= R. We only need

integrate over the upper half sphere, say H, due to symmetry. But then we have, using
dS = R2 sinφ dθ dφ,‹

S

(F · n) dS = 2R

¨
H

dS

= 2R

ˆ 2π

0

ˆ π/2

0

R2 sinφ dφ dθ

= 2R3

(ˆ 2π

0

dθ

)(ˆ π/2

0

sinφ dr

)
= 2R3 · 2π · 1
= 4πR3

Alternatively, observe
˜
S
(F · n) dS = R

˜
S
dS = R · surface area S. But the surface

area of a sphere is 4πR2 so that we have 4πR3 as expected. Now we compute the right
side. Observe

∇ · F =
∂

∂x
(x) +

∂

∂y
(y) +

∂

∂z
(z) = 1 + 1 + 1 = 3

But then ˚
R

∇ · F dV =

˚
R

3 dV

= 3

˚
V

dV

= 3

ˆ 2π

0

ˆ π

0

ˆ R

0

ρ2 sinφ dρ dφ dθ

= 3

(ˆ 2π

0

dθ

)(ˆ π

0

sinφ dφ

)(ˆ R

0

ρ2 dρ

)
= 3 · 2π · 2 · R

3

3
= 4πR3

Alternatively, recognize 3
˝

V
dV = 3 Volume(sphere) = 3 · 4

3
πR3 = 4πR3.


