
Beautiful Mind Problem

1 Introduction

In the Ron Howard film A Beautiful Mind, John Nash (played by Russell Crowe) gives his students a
problem and says, “As I was saying, this problem here will take some of you many months to solve.
For others among you, it will take you the term of your natural lives.”

Nash’s Problem:1

V = {F : R3 \X → R3 : ∇× F = 0}
W = {F : F = ∇g}

dim(V/W ) = 8

Let’s clear the meaning of the notation a bit. The set V is the set of vector fields defined except on a
set X such that they are curl free. The set W is the set of vector fields that are the gradient of some
function, i.e. conservative vector fields. The dim(V/W ) will be explained in the next section but is
the question portion: find a set X such that there are ‘only eight’ vector fields which are curl free
but not a gradient field. Despite Nash’s threat, let’s solve this problem in a time better measured in
minutes or hours rather than in months or years.

2 Linear Independence and Dimension

We say a collection of vectors {v1,v2, . . . ,vn} is linearly independent if and only if when a1v1 +
a2v2 + · · · + anvn = 0, then ai = 0 for all i. If a collection of vectors is not independent, we say
that the collection of vectors is linearly dependent. For example, the collection of vectors {v1,v2},
where v1 =

(
1
0

)
and v2 =

(
0
1

)
, is linearly independent as given(

0

0

)
= a1v1 + a2v2 = a1

(
1

0

)
+ a2

(
0

1

)
=

(
a1
0

)
+

(
0

a2

)
=

(
a1
a2

)
1There are some that say what is written is dim(V/W ) =?. This is an equally valid question – though more difficult.

However, solving the problem assuming that it is dim(V/W ) = 8 is not only easier, it shows how to solve the case where
dim(V/W ) =?.
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Then a1 = a2 = 0. However, the collection of vectors {v1,v2,v3}, where v1 =

 1
0
−2

, v2 =

 2
2
−1

,

and v3 =

4
6
1

, is linearly dependent as taking a1 = 2, a2 = −3, and a3 = 1, we have

a1v1 + a2v2 + a3v3 = 2

 1
0
−2

+ (−3)

 2
2
−1

+ 1

4
6
1

 =

0
0
0


(a) Determine if the vectors v1 =

(
1
3

)
and v2 =

(
3
−1
)

are linearly independent or linearly dependent.

(b) Determine if the vectors v1 =
(−2

6

)
and v2 =

(
1
−3
)

are linearly independent or linearly depen-
dent.

(c) Determine if the vectors v1 =

1
1
3

, v2 =

 0
2
−1

, and v3 =

 2
−4
9

 are linearly independent

or linearly dependent.

(d) Determine if the vectors v1 =

 1
1
−3

, v2 =

3
0
5

, and v3 =

−12
1

 are linearly independent

or linearly dependent.

Now we say that a collection of vectors {v1,v2, . . . ,vn} spans (or generates) a space if every vector
v can be written as

v = a1v1 + a2v2 + · · ·+ anvn

This is just a ‘fancy’ way of saying given any vector in our space (the space is ‘probably’ R2 or R3),
we can find some linear combination of vectors from our collection that will give that vector. If the
collection {v1,v2, . . . ,vn} not only spans the space but also is linearly independent, we say that
the set is a basis for the space. The dimension of a space is the number of vectors in a basis. [It is
not immediately obvious, but this number is unique and can be infinite.] For example, the space
R2 has dimension 2 since given any vector

(
a1
a2

)
∈ R2, we have(

a1
a2

)
=

(
a1
0

)
+

(
0

a2

)
= a1

(
1

0

)
+ a2

(
0

1

)
Then the collection {

(
1
0

)
,
(
0
1

)
} is a basis for R2 (we just showed that it spans R2 and we showed

before that the vectors are independent). Therefore, dimR2 = 2. Similarly, dimR3 = 3 as
1
0
0

 ,

0
1
0

 ,

0
0
1

 is a basis for R3. Indeed, the dimension of Rn is n.

These spaces do not have to be a set of vectors; they could be a set of functions. Consider P3 over
the reals – the set of polynomials of at most degree 3; that is, P3 is the set of polynomials of degree
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0, degree 1, degree 2, and degree 3. Then the set {1, x, x2, x3} is clearly linearly independent.
Furthermore, every polynomial a0 + a1x + a2x

2 + a3x
3 can be written as a combination of these

‘vectors’ so that dimP3 = 4. In general, dimPn = n+ 1.
Returning to Nash’s question, recall V is the set of vector fields defined everywhere in R3 (except

perhaps on X) which are curl free and W is the set of gradient fields. The notation V/W means
‘modding out by W ’. This is more technical and we will not rigorously define what this means.
Essentially, it means we treat the vector fields in V which are gradient fields as ‘0’ (meaning the
zero vector field, i.e. F(x, y, z) = 0 for all x, y, z). We now have enough language to understand the
problem. Nash’s problem is to find a set of points X so that the vector fields (defined everywhere
except maybe at the points of X) which are curl free but are not gradient fields has dimension 8, i.e.
dim(V/W ) = 8. The fact that dim(V/W ) = 8 means there are eight vector fields {F1,F2, . . . ,F8}
so that each of the F’s have the following properties:

(i) The F’s are in V : ∇× Fi = 0 for any point (x, y, z) ∈ R3 that is not in X.

(ii) The set of Fi’s are linearly independent: No sum of multiplies of the F’s is a gradient field,
i.e. is conservative. That is, there are no numbers a1, a2, . . . , a8 and vector field F so that

∇F = a1F1 + a2F2 + · · ·+ a8F8

(iii) The set of Fi’s generate V/W : If G is a vector field with ∇×G = 0, then there are numbers
a1, a2, . . . , a8 and a function field F so that

∇F = G− (a1F1 + a2F2 + · · ·+ a8F8)

3 2D Case

We first solve Nash’s problem in the 2-dimensional case, where it is simpler. This will show us how
the 3-dimensional case behaves. Let X = {(0, 0)} be the origin, V be the set of vector fields F on
R2 \X with ∇ × F = 0, and W the set of vector fields F which are gradient fields. We will show
that dim(V/W ) = 1. So we must find a single vector field F satisfying (i)–(iii) from above. We will
show that

F(x, y) =

〈
−y

x2 + y2
,

x

x2 + y2

〉
satisfies these properties.

(a) Show that ∇× F = 0 so that F satisfies (i).

(b) Show that
∮
C
aF · dr 6= 0 for any a 6= 0, where C is the unit circle centered at the origin,

oriented counterclockwise. Explain why this implies that aF is not conservative, i.e. that F is
not a gradient field showing that F satisfies (ii).

(c) Suppose G is a vector field defined everywhere except for possible the origin with ∇×G = 0.
Suppose C and C ′ are two different closed paths not passing through the origin so that C ′ can
be deformed to C without passing through the origin. [Imagine the paths are strings. You want
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to be able to stretch, shrink, bend, etc C ′ to become C without cutting or tearing C ′ or passing
through the origin.] Use Green’s Theorem to argue (or show directly) that∮

C
G · dr =

∮
C′

G · dr

(d) If C is a simple closed curve which does not pass through the origin, explain how one can de-
form C (as in the previous part) so that it is a circle that wraps (clockwise or counterclockwise)
around the origin k times for some number k.

(e) Let C denote the unit circle and assume ∇×G = 0. If C ′ is a curve which wraps around the

origin (without passing through it) k times. Let I =

∮
C
G · dr. Show that

∮
C′

G · dr = kI∮
C′

F · dr = k

(f) Now define for any vector field G, a vector field H by H := G − I
2πF. Show that H has the

closed loop property: ∮
C
H · dr = 0

where C is any simple closed curve. Explain why this shows that H is conservative. Explain
why this shows that (iii) holds for F.

(g) Observe that when we remove a single point – namely (0, 0) – we have dim(V/W ) = 1. Make
a prediction of what dim(V/W ) would be if we removed, say, 8 distinct points. Explain this
result ‘geometrically’; that is, what ‘geometric’ measurement is dim(V/W ) making?

4 3D Case

Now we have solved the 2-dimensional case where X is any collection of distinct points. One can
quickly generalize (with some work) to find dim(V/W ) when X is arbitrary. The solution for the
2-dimensional cases generalizes to the 3-dimensional problem at hand.

(a) Suppose that X = {(0, 0, 0)}. Use Stokes’ Theorem to argue that dim(V/W ) = 0; that is, show
that every irrotational (curl free) vector field defined on R3\X is a conservative vector field. In
this case, what is dim(V/W )? How does this differ than before? Can dim(V/W ) be measuring
the same ‘geometric’ properties?
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(b) Suppose that X is the z–axis in R3. Carefully use the work from the 2-dimensional case to
show that dim(V/W ) = 1.

(c) Interpret the previous part ‘geometrically’; that is, what ‘geometric’ measurement is dim(V/W )
making?

(d) Using the ideas of the previous part, find X so that dim(V/W ) = 8. Consider the ‘harder’
version of the problem: given a set X, what is dim(V/W )?

Note that all of these calculations and intricate relationships between the ‘geometry’ of the space
and functions on the space are simple examples of de Rham cohomology. These are objects of
interest in the fields Algebraic Topology and Differential Geometry – among others. However,
Algebraic Topology and Differential Geometry are only a few of the many fields of Mathematics
which study the relationship between function on a space and the ‘geometry’ of the space.
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Evaluation

Complete the following survey by rating each problem. Each area will be rated on a scale of 1 to 5.
For interest, 1 is “mind-numbing" while a 5 is “mind-blowing". For difficulty, 1 is “trivial/routine"
while 5 is “brutal." For learning, 1 means “nothing new" while 5 means "profound awakening".
Then you to estimate the amount of time you spent on each problem (in minutes).

Interest Difficulty Learning Time Spent
Linear Independence and Dimension

2D Case
3D Case

Indicate whether you believe this project was helpful in mastering the course material and/or if it
was helpful in developing a deeper understanding of the subject. Also, indicate whether you think
this project should be given to future Calculus III students.

Yes No
Helpful for the Course

Helpful in Learning the Subject
Assign Again

Finally, you may write any comments, thoughts, or suggestions in the space below.
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