(Left/Right) Limits:

Problem 1: True or False: If $\lim _{x \rightarrow a} f(x)$ exist, then $\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)$. Explain your answer.
Problem 2: True or False: If $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)$, then $\lim _{x \rightarrow a} f(x)$ exists. Explain your answer.
Problem 3: True or False: If $\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a} f(x)$, then $f(a)=\lim _{x \rightarrow a} f(x)$. Explain your answer.

Problem 4: Use the graph of $f(x)$ below to evaluate the following:

(a) $\lim _{x \rightarrow 2^{+}} f(x)$
(g) $\lim _{x \rightarrow-2} f(x)$
(b) $\lim _{x \rightarrow 2^{-}} f(x)$
(h) $f(-2)$
(c) $\lim _{x \rightarrow 2} f(x)$
(i) $\lim _{x \rightarrow 4^{-}} f(x)$
(d) $f(2)$
(j) $\lim _{x \rightarrow 4^{+}} f(x)$
(e) $\lim _{x \rightarrow-2^{-}} f(x)$
(k) $\lim _{x \rightarrow 4} f(x)$
(f) $\lim _{x \rightarrow-2^{+}} f(x)$
(l) $f(4)$

Problem 5: Let $f(x)=\llbracket x \rrbracket$ denote the largest integer n such that $n \leq x$. For example, $\llbracket 1.5 \rrbracket=1$, $\llbracket 2 \rrbracket=2, \llbracket-1 \rrbracket=-1, \llbracket-2.2 \rrbracket=-3$, and $\llbracket 0 \rrbracket=0$. This function is used in Computer Science since $\llbracket x \rrbracket$ gives the 'integer part' of x.
(a) Graph the function $f(x)=\llbracket x \rrbracket$
(b) Determine $\lim _{x \rightarrow 3.2^{+}} f(x), \lim _{x \rightarrow 3.2^{-}} f(x)$, and $\lim _{x \rightarrow 3.2} f(x)$.
(c) Determine $\lim _{x \rightarrow 5^{+}} f(x), \lim _{x \rightarrow 5^{-}} f(x)$, and $\lim _{x \rightarrow 5} f(x)$.
(d) Using the previous parts for what values a does $\lim _{x \rightarrow a} f(x)$ exist?

Problem 6: Sketch the graph of a function, $f(x)$, satisfying the following:
(i) $\lim _{x \rightarrow 2^{+}} f(x)=-3$
(ii) $\lim _{x \rightarrow 2^{-}} f(x)=5$
(iii) $\lim _{x \rightarrow-2^{-}} f(x)=\infty$
(iv) $\lim _{x \rightarrow-2^{+}} f(x)=-\infty$

Problem 7: Sketch the graph of a function, $g(x)$, satisfying the following:
(i) $\lim _{x \rightarrow 0} g(x)=1$.
(ii) $\lim _{x \rightarrow \infty} g(x)=-1$
(iii) $\lim _{x \rightarrow-\infty} g(x)=-\infty$
(iv) $\lim _{x \rightarrow 3^{+}} g(x)=3$
(v) $\lim _{x \rightarrow 3^{+}} g(x)=-2$

Problem 8: If $\lim _{x \rightarrow a}(f(x)+g(x))$ exists, must $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist? Prove or give a counterexample. If $\lim _{x \rightarrow a}(f(x) g(x))$ exists, must $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist? Prove or give a counterexample.

Problem 9: In Special Relativity, the energy of a particle moving at a velocity v is given by

$$
E(v)=\frac{m c^{2}}{\sqrt{1-v^{2} / c^{2}}}
$$

where c is the speed of light and m is the mass of the particle. What happens if $v=0$? What happens as v approaches c ? What does this limit imply? Is this something you already knew from Science?

Problem 10: Use the graph of $f(x)$ below to evaluate the following:

(a) $\lim _{x \rightarrow-2^{-}} f(x)$
(f) $\lim _{x \rightarrow 1^{+}} f(x)$
(b) $\lim _{x \rightarrow-2^{+}} f(x)$
(g) $\lim _{x \rightarrow 1} f(x)$
(c) $\lim _{x \rightarrow-2} f(x)$
(h) $f(1)$
(d) $f(-2)$
(i) $\lim _{x \rightarrow-\infty} f(x)$
(e) $\lim _{x \rightarrow 1^{-}} f(x)$
(j) $\lim _{x \rightarrow \infty} f(x)$

Computing Limits

Problem 11: Using the fact that $\lim _{x \rightarrow 1} f(x)=3, \lim _{x \rightarrow 1} g(x)=-2$, and $\lim _{x \rightarrow 1} h(x)=0$, determine-if possible-the following limits. Be sure to justify each step!
(a) $\lim _{x \rightarrow 1}(f(x)-g(x))$
(f) $\lim _{x \rightarrow 1} \frac{f(x)-g(x)}{2 f(x)+1}$
(b) $\lim _{x \rightarrow 1}(2 f(x)-5 g(x))$
(g) $\lim _{x \rightarrow 1} \frac{h(x)}{f(x)}$
(c) $\lim _{x \rightarrow 1}\left(f(x)^{2}-g(x)\right)$
(h) $\lim _{x \rightarrow 1} \frac{f(x)}{h(x)}$
(d) $\lim _{x \rightarrow 1} \sqrt{f(x)^{2}+g(x)^{4}}$
(i) $\lim _{x \rightarrow 1} \frac{2 f(x)+3 g(x)}{h(x)}$

Problem 12: Evaluate the following limits:
(a) $\lim _{x \rightarrow 2} \frac{x^{2}+3 x+2}{x-3}$
(e) $\lim _{x \rightarrow 0} \frac{\sqrt{x+4}-2}{x}$
(b) $\lim _{x \rightarrow 0} \frac{x^{2}-x+1}{x+1}$
(f) $\lim _{x \rightarrow-2} \frac{\frac{1}{2}+\frac{1}{x}}{2+x}$
(c) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{2}-4 x+3}$
(g) $\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}$
(d) $\lim _{x \rightarrow-2} x \sin x$

Problem 13: Evaluate the following limits:
(a) $\lim _{t \rightarrow 5} \frac{t^{2}-7 t+6}{t-5}$
(c) $\lim _{t \rightarrow 1} \frac{t^{2}-2 t-1}{t^{4}-1}$
(b) $\lim _{t \rightarrow 1} \frac{t^{2}-4 t+3}{t-1}$
(d) $\lim _{t \rightarrow 0}\left(\frac{5}{t}-\frac{5}{t^{2}+t}\right)$

Problem 14: Evaluate the following limits:
(a) $\lim _{w \rightarrow 0} \frac{w}{|w|}$
(d) $\lim _{w \rightarrow 3} \frac{w^{2}+w-12}{|w-3|}$
(b) $\lim _{w \rightarrow-2} \frac{2 w+4}{|w+2|}$
(c) $\lim _{w \rightarrow 6} \frac{|w-5|-1}{w-6}$
(e) $\lim _{w \rightarrow 2}\left(3 w^{3}-|w-2|\right)$

Problem 15: If $\lim _{x \rightarrow-4} \frac{f(x)-9}{x+4}=6$, what is $\lim _{x \rightarrow-4} f(x)$?
Problem 16: Evaluate the following limits:
(a) $\lim _{h \rightarrow 0} \frac{\frac{1}{3+h}-\frac{1}{3}}{h}$
(e) $\lim _{w \rightarrow 0} \frac{\cos w}{\sin w}$
(b) $\lim _{x \rightarrow-3} \frac{x^{2}+7 x+12}{x^{2}+2 x-3}$
(f) $\lim _{\theta \rightarrow 0} \frac{\theta}{\tan \theta}$
(c) $\lim _{h \rightarrow 0} \frac{(1+h)^{3}-1}{h}$
(g) $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}\left[\right.$ Hint: Multiply by $\left.\frac{1+\cos x}{1+\cos x} \cdot\right]$
(d) $\lim _{x \rightarrow 0} \frac{x}{1-\sqrt{1+x}}$
(h) $\lim _{x \rightarrow 1} \frac{x^{2}+3 x-5}{x^{2}-2 x-1}$

Limits with Infinity

Problem 17: Find the following limits (if they exist):
(a) $\lim _{x \rightarrow \infty} 1 / x$
(e) $\lim _{x \rightarrow \infty} \frac{x^{5}-x+2}{x^{3}+16 x^{2}+14 x+2}$
(b) $\lim _{x \rightarrow \infty} \sin x$
(f) $\lim _{x \rightarrow \infty} \frac{x^{2}-2 x+8}{x^{4}+4 x+1}$
(c) $\lim _{x \rightarrow \infty} \frac{x-1}{x+2}$
(d) $\lim _{x \rightarrow \infty} \frac{2 x^{2}+5 x+7}{3 x^{2}-x-7}$

Problem 18: Find the following limits (if they exist):
(a) $\lim _{x \rightarrow \infty} \frac{6}{x^{2}+4}$
(d) $\lim _{x \rightarrow \infty} \ln \left(\frac{2 x+1}{3 x-2}\right)$
(b) $\lim _{x \rightarrow \infty} 2^{-x}$
(e) $\lim _{x \rightarrow \infty} \cos (1 / x)$
(c) $\lim _{x \rightarrow \infty} \ln (x+6)$
(f) $\lim _{x \rightarrow \infty} x \sin (1 / x)$

Problem 19: Compute the following limits, if they exist:
(a) $\lim _{x \rightarrow-\infty} \frac{2 x^{3}-x+3}{x^{2}+7 x-1}$
(c) $\lim _{x \rightarrow \infty} \frac{x+7}{x^{3}+1}$
(b) $\lim _{x \rightarrow \infty} \frac{5 x^{4}+x+1}{13 x^{4}-9 x^{2}+6}$
(d) $\lim _{x \rightarrow-\infty} \frac{x+1}{x-3}$

Problem 20: Find the x-intercepts, y-intercepts, vertical asymptotes, and horizontal asymptotes of the following function. If there are discontinuities, identify them. If there are removable discontinuities, identify the point.

$$
\frac{(x+2)(x-3)(x+7)(2 x-3)}{(x-3)(2 x+1)(x-2)(x-7)}
$$

Problem 21: Compute $\lim _{x \rightarrow \infty}\left(\sqrt{9 x^{2}+1}-3 x\right)$.
Problem 22: Find the limit of $\sqrt{2 x^{2}+4 x-1}-\sqrt{2 x^{2}+8 x+7}$ as x tends to infinity.

Continuity

Problem 23: For the following plot, find the values of x for which the function is discontinuous and identify the type of discontinuity.

Problem 24: Explain why the following functions are discontinuous:
(a) $f(x)=\sin (1 / x)$
(b) $h(x)=\frac{1}{2-x}$
(c) $r(x)= \begin{cases}2 x+3, & x<1 \\ x-7, & x \geq 1\end{cases}$
(d) $s(x)= \begin{cases}-2 x, & x<0 \\ 4 x, & x>0\end{cases}$

Problem 25: Explain why the function $g(x)=x \sin (1 / x)$ is discontinuous on the interval [-1, 1]. What type of discontinuity does $g(x)$ have on this interval? If possible, 'repair' the discontinuity.

Problem 26: Find the values of x at which the following function is continuous. Explain your reasoning.

$$
f(x)= \begin{cases}-2-x, & -1 \leq x \\ -1, & -1<x \leq 0 \\ \sqrt{x}, & 0<x<1 \\ 2-x, & 1 \leq x<2 \\ (x-2)^{2}, & 2 \leq x\end{cases}
$$

Problem 27: Find the intervals on which the following functions are continuous:
(a) $f(x)=2 x+3$
(d) $r(x)=\frac{\sin x}{x^{2}+2 x+3}$
(b) $g(x)=\frac{1}{6-5 x}$
(e) $s(x)=\sin \left(\cos \left(x^{2}+1\right)\right)$
(c) $h(x)=\frac{x-7}{x+6}$
(f) $t(x)=\frac{x \sin (1-x)}{\sqrt{x^{2}+2}}$

Problem 28: Find the values for x for which the following functions are discontinuous and demonstrate they are correct by graphing the function.
(a) $f(x)=\frac{5}{2+2 \cos x}$
(b) $g(x)=\tan \sqrt{x}$
(c) $h(x)=\ln \left|x^{2}-4\right|$

Problem: Find values for b and c that make the following function continuous:

$$
f(x)= \begin{cases}x^{2}+3 x-1, & x \leq-1 \\ x^{3}+b x^{2}+c x+2, & -1<x<2 \\ 2|x+1|, & 2 \leq x\end{cases}
$$

Problem 29: Show that the following function is everywhere continuous.

$$
f(x)= \begin{cases}\frac{\sin (x-3)}{x-3}, & x \neq 3 \\ 1, & x=3\end{cases}
$$

Problem 30: Show that the following function is everywhere continuous.

$$
f(x)= \begin{cases}x^{2} \sin (1 / x), & x \neq 0 \\ 0, & x=0\end{cases}
$$

Intermediate Value Theorem \& Squeeze Theorem

Problem 31: Use the Squeeze Theorem to prove the following:
(a) $\lim _{x \rightarrow 0} x^{2} \sin ^{2}\left(\frac{1}{x}\right)=0$
(b) $\lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x^{2}}\right)=0$
(c) $\lim _{x \rightarrow 0} x^{2} e^{\sin 1 / x}=0$
(d) $\lim _{x \rightarrow \infty} \frac{2+\sin x}{x-3}=0$

Problem 32: Use the Intermediate Value Theorem to show that there is a root for the function in the given interval.
(a) $f(x)=x^{3}-x-1$ on $(1,2)$
(b) $g(x)=x \sin ^{2} x-1$ on $(0,2)$
(c) $h(x)=\ln (4 x+1)-x+2$ on $(4,6)$

Problem 33: Use the Intermediate Value Theorem to show that there is a solution to the given equation.
(a) $\sin x=x$
(b) $4 x^{2}-4=2 x$
(c) $e^{x}=10-\sqrt{x}$
(d) $\pi x^{15}+e^{2} x^{13}-5 x^{4}+\sqrt[3]{2}=e^{\pi} x^{12}+\pi^{e} x^{3}+6 x-1729$

Problem 34: Let $f(x)=x^{2}+x \sin x-3$. Prove there is a number $c \in \mathbb{R}$ so that $f(c)=\sqrt[3]{\pi}$. Is this value unique? Use WolframAlpha to approximate these values.

Derivative Definition

Problem 35: Use the definition of the derivative to find the derivative of $f(x)=2 x+1$.
Problem 36: Use the definition of the derivative to find the derivative of $g(x)=x-x^{2}$.
Problem 37: Use the definition of the derivative to find the derivative of $h(x)=\frac{1}{x}$.
Problem 38: Use the definition of the derivative to find the derivative of the given function at the given x value:
(a) $f(x)=1-2 x, x=1$
(b) $g(x)=x^{2}+x+1, x=0$
(c) $h(x)=\frac{1}{x}, x=4$
(d) $j(x)=\sqrt{x}, x=1$

Problem 39: The following represents the derivative of some function f at some value a. Find such an f and a :

$$
\lim _{h \rightarrow 0} \frac{(2+h)^{3}-8}{h}
$$

Problem 40: The following represents the derivative of some function f at some value a. Find such an f and a :

$$
\lim _{h \rightarrow 0} \frac{\sqrt{9+h}-3}{h}
$$

Problem 41: The following represents the derivative of some function f at some value a. Find such an f and a :

$$
\lim _{h \rightarrow 0} \frac{\frac{1}{(h-3)^{2}}-\frac{1}{9}}{h}
$$

