l'Hôpital's Rule:

- Know the indeterminate forms: $\frac{0}{0}, \pm \frac{\infty}{\infty}, 0 \cdot \infty, \infty-\infty, 1^{\infty}, 0^{0}, \infty^{0}$
- Be able to find limits using l'Hôpital's Rule, especially when more than one application of l'Hôpital's Rule is needed.
- Know how to compute limits involving each of the indeterminate forms above:
(i) $\frac{0}{0}, \pm \frac{\infty}{\infty}$: Handled 'normally.'
(ii) $0 \cdot \infty$: Move either the 0 or ∞ term into the denominator to obtain one of the above forms.
(iii) $\infty-\infty$: Combine terms or factor out something to obtain one of the forms above.
(iv) $0 . \infty, \infty-\infty, 1^{\infty}, 0^{0}, \infty^{0}$: Use logarithms, i.e. set $L=\lim f(x)^{g(x)}$, take logs to obtain $\lim g(x) \ln f(x)$. Then compute this limit, which is now one of the above indeterminate forms above. If this limit is W, then the original limit is e^{W}.
- Know how to find limits involving indeterminate forms without l'Hôpital's Rule, i.e. multiply by $\frac{1 / x^{\operatorname{deg} \operatorname{dem}}}{1 / x^{\operatorname{deg} \operatorname{den}}}$. This is especially true when l'Hôpital's Rule is difficult or otherwise loops, especially with roots, e.g. $\lim _{x \rightarrow \infty} \frac{x+1}{\sqrt{x^{2}+4}}$.
- Know when l'Hôpital's Rule does not apply, e.g. $\lim _{x \rightarrow \infty} \frac{x+\sin x}{x+\cos x}$, and why l'Hôpital's Rule does not apply.

Mean Value Theorem:

- Know the statement of the Mean Value Theorem (MVT).
- Be able to check whether the MVT can applied to a function on a given interval.
- Be able to apply the MVT to a function on a given interval.
- Know 'real life' applications and statements of the MVT.
- Be able to find values c that satisfy the statement of the MVT on a given interval.
- Be able to use the MVT to prove inequalities.
- Be able to use the MVT to bound function values on a given interval.

Derivatives:

- Know the statements of the First and Second Derivative Tests.
- Know how to apply the First and Second Derivative Tests.
- Be able to find critical values for functions and classify whether they are a maximum, minimum, or neither.
- Be able to use the derivative to find the intervals where a function is increasing and decreasing.
- Be able to use the second derivative to find the intervals where a function is concave and convex.
- Be able to find points of inflection.
- Be able to find the maximum/minimum values of a function on a closed interval, i.e. find \max / min of $f(x)$ on $[a, b]$. [The usual work along with comparing the endpoint values.]
- Given a graph of $f(x)$, be able to find where...
(i) intervals where $f(x)$ is increasing/decreasing
(ii) intervals where $f(x)$ is concave/convex
(iii) points of maximum/minimum
(iv) points of inflection
(v) Sketch a graph of $f^{\prime}(x)$
- Given a graph of $f^{\prime}(x)$, be able to find where...
(i) intervals where $f(x)$ is increasing/decreasing
(ii) intervals where $f(x)$ is concave/convex
(iii) points of maximum/minimum
(iv) points of inflection
(v) Sketch a possible graph of $f(x)$
(vi) Sketch a graph of $f^{\prime \prime}(x)$
- Given a function $f(x)$, be able to provide a detailed sketch of $f(x)$, including finding: vertical/horizontal asymptotes, maximum/minimum values, points of inflection, intervals of increasing/decreasing, intervals where $f(x)$ is concave/convex

Optimization:

- Be able to identify quantities to be optimized in a given problem.
- Be able to give rough sketches of various scenarios in an optimization problem.
- Know various area \& volume formulas:
- Volume Cube: $V=s^{3}$
- Surface Area Cube: $S A=6 s^{2}$
- Volume Rectangular Prism: $V=l w h$
- Surface Area Rectangular Prism: $S A=2(l w+l h+h w)$
- Area Square: $A=s^{2}$
- Perimeter Square: $L=4 \mathrm{~s}$
- Area Rectangle: $A=l w$
- Perimeter Rectangle: $L=2 l+2 w$
- Area Circle: $A=\pi r^{2}$
- Circumference Circle: $C=2 \pi r$
- Volume Right Circular Cone: $V=\frac{\pi r^{2} h}{3}$
- Surface Area Right Circular Cone: $S=\pi r \sqrt{r^{2}+h^{2}}+\pi r^{2}$
- Volume Cylinder: $V=\pi r^{2} h$
- Surface Area Cylinder: $S=2 \pi r h+2 \pi r^{2}$
- Volume Sphere: $V=\frac{4}{3} \pi r^{3}$
- Surface Area Sphere: $S=4 \pi r^{2}$
- Area Triangle: $A=\frac{b h}{2}$
- Be able to find maximum or minimum values of an optimized quantity in an applied problem.
- Be able to confirm a value is a maximum/minimum value in an applied problem.

