l'Hôpital's Rule:

- Know the indeterminate forms: $\frac{0}{0}$, $\pm \frac{\infty}{\infty}$, $0 \cdot \infty$, $\infty \infty$, 1^{∞} , 0^{0} , ∞^{0}
- Be able to find limits using l'Hôpital's Rule, especially when more than one application of l'Hôpital's Rule is needed.
- Know how to compute limits involving each of the indeterminate forms above:
 - (i) $\frac{0}{0}, \pm \frac{\infty}{\infty}$: Handled 'normally.'
 - (ii) $0 \cdot \infty$: Move either the 0 or ∞ term into the denominator to obtain one of the above forms.
 - (iii) $\infty \infty$: Combine terms or factor out something to obtain one of the forms above.
 - (iv) $0 \cdot \infty, \infty \infty, 1^{\infty}, 0^{0}, \infty^{0}$: Use logarithms, i.e. set $L = \lim f(x)^{g(x)}$, take logs to obtain $\lim g(x) \ln f(x)$. Then compute this limit, which is now one of the above indeterminate forms above. If this limit is W, then the original limit is e^{W} .
- Know how to find limits involving indeterminate forms without l'Hôpital's Rule, i.e. multiply by ¹/x^{deg dem}/<sub>1/x<sup>deg den</sub></sub>. This is especially true when l'Hôpital's Rule is difficult or otherwise loops, especially with roots, e.g. lim_{x→∞} x + 1/√x² + 4.

 </sub></sup>
- Know when l'Hôpital's Rule does not apply, e.g. $\lim_{x\to\infty} \frac{x+\sin x}{x+\cos x}$, and why l'Hôpital's Rule does not apply.

Mean Value Theorem:

- Know the statement of the Mean Value Theorem (MVT).
- Be able to check whether the MVT can applied to a function on a given interval.
- Be able to apply the MVT to a function on a given interval.
- Know 'real life' applications and statements of the MVT.
- Be able to find values *c* that satisfy the statement of the MVT on a given interval.
- Be able to use the MVT to prove inequalities.
- Be able to use the MVT to bound function values on a given interval.

Derivatives:

- Know the statements of the First and Second Derivative Tests.
- Know how to apply the First and Second Derivative Tests.
- Be able to find critical values for functions and classify whether they are a maximum, minimum, or neither.

- Be able to use the derivative to find the intervals where a function is increasing and decreasing.
- Be able to use the second derivative to find the intervals where a function is concave and convex.
- Be able to find points of inflection.
- Be able to find the maximum/minimum values of a function on a closed interval, i.e. find max/min of *f*(*x*) on [*a*, *b*]. [The usual work along with comparing the endpoint values.]
- Given a graph of f(x), be able to find where...
 - (i) intervals where f(x) is increasing/decreasing
 - (ii) intervals where f(x) is concave/convex
 - (iii) points of maximum/minimum
 - (iv) points of inflection
 - (v) Sketch a graph of f'(x)
- Given a graph of f'(x), be able to find where...
 - (i) intervals where f(x) is increasing/decreasing
 - (ii) intervals where f(x) is concave/convex
 - (iii) points of maximum/minimum
 - (iv) points of inflection
 - (v) Sketch a possible graph of f(x)
 - (vi) Sketch a graph of f''(x)
- Given a function f(x), be able to provide a detailed sketch of f(x), including finding: vertical/horizontal asymptotes, maximum/minimum values, points of inflection, intervals of increasing/decreasing, intervals where f(x) is concave/convex

Optimization:

- Be able to identify quantities to be optimized in a given problem.
- Be able to give rough sketches of various scenarios in an optimization problem.
- Know various area & volume formulas:
 - Volume Cube: $V = s^3$
 - Surface Area Cube: $SA = 6s^2$
 - Volume Rectangular Prism: V = lwh
 - Surface Area Rectangular Prism: SA = 2(lw + lh + hw)
 - Area Square: $A = s^2$
 - Perimeter Square: L = 4s
 - Area Rectangle: A = lw
 - Perimeter Rectangle: L = 2l + 2w
 - Area Circle: $A = \pi r^2$
 - Circumference Circle: $C = 2\pi r$

- Volume Right Circular Cone: $V = \frac{\pi r^2 h}{3}$
- Surface Area Right Circular Cone: $S = \pi r \sqrt{r^2 + h^2} + \pi r^2$
- Volume Cylinder: $V = \pi r^2 h$
- Surface Area Cylinder: $S = 2\pi rh + 2\pi r^2$
- Volume Sphere: $V = \frac{4}{3}\pi r^3$
- Surface Area Sphere: $S = 4\pi r^2$
- Area Triangle: $A = \frac{bh}{2}$
- Be able to find maximum or minimum values of an optimized quantity in an applied problem.
- Be able to confirm a value is a maximum/minimum value in an applied problem.