EXTENDING RATIONAL LIMIT EXAMPLES

The trick of finding limits that 'looked like' $\lim _{x \rightarrow \pm \infty} \frac{\text { polynomial }}{\text { polynomial }}$ was to multiply by $\frac{1 / x^{\operatorname{deg} \mathrm{den}}}{1 / x^{\operatorname{deg} \operatorname{den}}}$. We can do the same thing when the limit is 'close' to being a rational function, but we 'distribute' the root to the power of the degree of the denominator. So instead things like $\frac{1 / x^{2}}{1 / x^{2}}$, the term we multiply by may look like $\frac{1 / x^{4 / 2}}{1 / x^{4 / 2}}=\frac{1 / x^{2}}{1 / x^{2}}$ or $\frac{1 / x^{3 / 2}}{1 / x^{3 / 2}}$. We may have to do some extra algebra to pull one of these x terms into a root, being careful of signs.

Example.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x+1}{\sqrt{2 x+1}} & =\lim _{x \rightarrow \infty} \frac{x+1}{\sqrt{2 x+1}} \cdot \frac{1 / \sqrt{x}}{1 / \sqrt{x}} \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{x}+1 / \sqrt{x}}{\frac{\sqrt{2 x+1}}{\sqrt{x}}} \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{x}+1 / \sqrt{x}}{\sqrt{\frac{2 x+1}{x}}} \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{x}+1 / \sqrt{x}}{2+1 / x} \\
& =\infty
\end{aligned}
$$

Example.

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{3 x^{2}+x-5}{\sqrt{2 x^{4}-5}} & =\lim _{x \rightarrow \infty} \frac{3 x^{2}+x-5}{\sqrt{2 x^{4}-5}} \cdot \frac{1 / x^{2}}{1 / x^{2}} \\
& =\lim _{x \rightarrow-\infty} \frac{3+\frac{1}{x}-\frac{5}{x^{2}}}{\frac{\sqrt{2 x^{4}-5}}{x^{2}}} \\
& =\lim _{x \rightarrow-\infty} \frac{3+\frac{1}{x}-\frac{5}{x^{2}}}{\sqrt{\frac{2 x^{4}-5}{x^{4}}}} \\
& =\lim _{x \rightarrow-\infty} \frac{3+\frac{1}{x}-\frac{5}{x^{2}}}{\sqrt{2-\frac{5}{x^{4}}}} \\
& =\frac{3+0-0}{\sqrt{2-0}} \\
& =\frac{3}{\sqrt{2}}
\end{aligned}
$$

Example.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x^{2}+2 x+2}{\sqrt{x^{6}+4 x^{2}+1}} & =\lim _{x \rightarrow \infty} \frac{x^{2}+2 x+2}{\sqrt{x^{6}+4 x^{2}+1}} \cdot \frac{1 / x^{3}}{1 / x^{3}} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{1}{x}+\frac{2}{x^{2}}+\frac{2}{x^{3}}}{\frac{\sqrt{x^{6}+4 x^{2}+1}}{x^{3}}} \\
& =\lim _{x \rightarrow \infty} \frac{1 / x+2 / x^{2}+2 / x^{3}}{\sqrt{\frac{x^{6}+4 x^{2}+1}{x^{6}}}} \\
& =\lim _{x \rightarrow \infty} \frac{1 / x+2 / x^{2}+2 / x^{3}}{\sqrt{1+4 / x^{4}+1 / x^{6}}} \\
& =\frac{0+0+0}{\sqrt{1+0+0}} \\
& =0
\end{aligned}
$$

Example.

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{x+1}{\sqrt{x^{2}+1}} & =\lim _{x \rightarrow-\infty} \frac{x+1}{\sqrt{x^{2}+1}} \cdot \frac{1 / x}{1 / x} \\
& =\lim _{x \rightarrow-\infty} \frac{1+1 / x}{\frac{\sqrt{x^{2}+1}}{x}} \\
& =\lim _{x \rightarrow-\infty} \frac{1+1 / x}{-\sqrt{\frac{x^{2}+1}{x^{2}}}} \\
& =\lim _{x \rightarrow-\infty} \frac{1+1 / x}{-\sqrt{1+1 / x^{2}}} \\
& =\frac{1+0}{-\sqrt{1+0}} \\
& =-1
\end{aligned}
$$

Example.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x+1}{\sqrt{x^{3}+6}} & =\lim _{x \rightarrow \infty} \frac{x+1}{\sqrt{x^{3}+6}} \cdot \frac{1 / x^{3 / 2}}{1 / x^{3 / 2}} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{x}{x^{3 / 2}}+\frac{1}{x^{3 / 2}}}{\frac{\sqrt{x^{3}+6}}{x^{3 / 2}}} \\
& =\lim _{x \rightarrow \infty} \frac{1 / x^{1 / 2}+1 / x^{3 / 2}}{\sqrt{\frac{x^{3}+6}{x^{3}}}} \\
& =\lim _{x \rightarrow \infty} \frac{1 / \sqrt{x}+1 / x^{3 / 2}}{\sqrt{1+6 / x^{3}}} \\
& =\frac{0+0}{\sqrt{1+0}} \\
& =0
\end{aligned}
$$

Example.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x+4}{\sqrt[3]{x^{6}+6}} & =\lim _{x \rightarrow \infty} \frac{x+4}{\sqrt[3]{x^{6}+6}} \cdot \frac{1 / x^{6 / 3}}{1 / x^{6 / 3}} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{x}{x^{3}}+\frac{4}{x^{3}}}{\frac{\sqrt[3]{x^{6}+6}}{x^{6 / 3}}} \\
& =\lim _{x \rightarrow \infty} \frac{1 / x^{2}+4 / x^{3}}{\sqrt[3]{\frac{x^{6}+6}{x^{6}}}} \\
& =\lim _{x \rightarrow \infty} \frac{1 / x^{2}+4 / x^{3}}{\sqrt[3]{1+6 / x^{6}}} \\
& =\frac{0+0}{\sqrt[3]{1+0}} \\
& =0
\end{aligned}
$$

Example.

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{4}+3}}{2 x^{2}+1} & =\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{4}+3}}{2 x^{2}+1} \cdot \frac{1 / x^{2}}{1 / x^{2}} \\
& =\lim _{x \rightarrow-\infty} \frac{\frac{\sqrt{x^{4}+3}}{x^{2}}}{\frac{2 x^{2}+1}{x^{2}}} \\
& =\lim _{x \rightarrow-\infty} \frac{\sqrt{\frac{x^{4}+3}{x^{4}}}}{2+1 / x^{2}} \\
& =\lim _{x \rightarrow-\infty} \frac{\sqrt{1+3 / x^{4}}}{2+1 / x^{2}} \\
& =\frac{\sqrt{1+0}}{2+0} \\
& =\frac{1}{2}
\end{aligned}
$$

