Quiz 1: Complete the following chart:

Solution:

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	undef.

Quiz 2: Circle whether the following are True or False:

Solution:

(i) If $\lim _{x \rightarrow 3} f(x)$ exists, then $\lim _{x \rightarrow 3^{-}} f(x)$ and $\lim _{x \rightarrow 3^{+}} f(x)$ both exist.

True False
(ii) If $\lim _{x \rightarrow-1^{+}} g(x)$ and $\lim _{x \rightarrow-1^{-}} g(x)$ both exist, then $\lim _{x \rightarrow-1} g(x)$ exists. True False

Quiz 3: Compute the following limit: $\lim _{h \rightarrow 0} \frac{3(h+1)^{2}-3}{h}$

Solution:

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{3(h+1)^{2}-3}{h}=\lim _{h \rightarrow 0} \frac{3\left(h^{2}+2 h+1\right)-3}{h}=\lim _{h \rightarrow 0} \frac{3 h^{2}+6 h+3-3}{h}=\lim _{h \rightarrow 0} \frac{3 h^{2}+6 h}{h} & =\lim _{h \rightarrow 0} \frac{\not h(3 h+6)}{h h} \\
& =\lim _{h \rightarrow 0}(3 h+6)=6
\end{aligned}
$$

Quiz 4: Compute the following limit: [You do not need to show your work.]

$$
\lim _{x \rightarrow \infty} \frac{2 x^{3}-3 x^{2}+x-7}{3 x^{3}+x^{2}-1}=
$$

Solution:

$$
\lim _{x \rightarrow \infty} \frac{2 x^{3}-3 x^{2}+x-7}{3 x^{3}+x^{2}-1}=\frac{2}{3}
$$

Quiz 5: Let $f(x):=\frac{2 x^{2}-\sin x}{x-3}$. Mark whether $f(x)$ is continuous on the following intervals; use ' \boldsymbol{J} ' to indicate that it is continuous and ' \boldsymbol{X} ' to indicate that it is not continuous.
(i) \qquad $: \mathbb{R}$
(ii) \qquad : $[-1,1]$
(iii) \qquad : $[-5,5]$
(iv) \qquad : $[0,1]$

Solution:

(i) \qquad $: \mathbb{R}$
(ii) \qquad : $[-1,1]$
(iii) \qquad $:[-5,5]$
(iv) \qquad : $[0,1]$
\qquad

Quiz 6: A student is attempting to prove that there is a solution to $x^{3}+2 x-1=x$. The student completes the problem in the steps shown below. Place a ' \checkmark ' in the step where there is a mistake, or place a ' \checkmark ' in the blank space in (v) to indicate steps (i)-(iv) are correct.
(i) \qquad : The equation has a solution if and only if $x^{3}+x-1=0$.
(ii) ___ The function $f(x):=x^{3}+x-1$ is continuous.
(iii) \quad _ $f(0)<0<f(1)$
(iv) \quad By the Intermediate Value Theorem, there is a $c \in(0,1)$ so that $c^{3}+c-1=0$, i.e. $c^{3}+2 c-1=c$.
(v) \qquad : The solution is correct.

Quiz 7: Use the Squeeze Theorem to prove $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{|x|}\right)=0$.
Solution: We know $-1 \leq \sin x \leq 1$. Therefore, $-x^{2} \leq x^{2} \sin \left(\frac{1}{|x|}\right) \leq x^{2}$. But we know that $\lim _{x \rightarrow 0}\left(-x^{2}\right)=\lim _{x \rightarrow 0} x^{2}=0$. Therefore by Squeeze Theorem,

$$
\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{|x|}\right)=0
$$

\qquad

Quiz 8: The figure above is a graphical reasoning for the derivative of what function?
Solution: $f(x)=x^{2}$ [To rewatch the video, visit https://www.youtube.com/watch?v=S0_qX4VJhMQ.]
\qquad x

Quiz 9: Let $f(x)=2 x^{2}+x+1$. Use the definition of the derivative to find $f^{\prime}(1)$.

Solution:

$$
\begin{aligned}
f^{\prime}(1): & =\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[2(1+h)^{2}+(1+h)+1\right]-4}{h} \\
& =\lim _{h \rightarrow 0} \frac{2\left(h^{2}+2 h+1\right)+h-2}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h^{2}+5 h+2-2}{h} \\
& =\lim _{h \rightarrow 0}(2 h+5)=5
\end{aligned}
$$

Quiz 10: Find the following derivatives:
(a) $\frac{d}{d x} \sin x=\cos x$
(d) $\frac{d}{d x} \pi^{2}=0$
(b) $\frac{d}{d x} x^{3}=3 x^{2}$
(e) $\frac{d}{d x} e^{x}=e^{x}$
(c) $\frac{d}{d x} \cos x=-\sin x$
(f) $\frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}}$

Quiz 11: Find the tangent line to the function $f(x)=\frac{x^{2} \sin \left(x^{2}-1\right)+6}{x^{2}+1}$ at $x=1$.

Solution:

$$
\begin{aligned}
\frac{d}{d x}\left[\frac{x^{2} \sin \left(x^{2}-1\right)+6}{x^{2}+1}\right] & =\frac{\left(x^{2}+1\right)\left(2 x \sin \left(x^{2}-1\right)+x^{2} \cdot \cos \left(x^{2}-1\right) \cdot 2 x\right)-(2 x)\left(x^{2} \sin \left(x^{2}-1\right)+6\right)}{\left(x^{2}+1\right)^{2}} \\
\frac{d}{d x}\left[\frac{x^{2} \sin \left(x^{2}-1\right)+6}{x^{2}+1}\right]_{x=1} & =\frac{(1+1)(2 \sin (0)+\cos (0) \cdot 2)-2(\sin (0)+6)}{2^{2}} \\
& =\frac{2 \cdot(0+2)-2(0+6)}{4}=\frac{4-12}{4}=\frac{-8}{4}=-2
\end{aligned}
$$

We also have $f(1)=\frac{1 \cdot \sin (0)+6}{2}=\frac{6}{2}=3$. Then

$$
\begin{aligned}
& y=y_{0}+m\left(x-x_{0}\right) \\
& y=3-2(x-1) \\
& y=3-2 x+2 \\
& y=5-2 x
\end{aligned}
$$

Quiz 12: Find $\frac{d y}{d x}$ for the curve $x^{2}+x y+y^{2}=8$.

Solution:

$$
\begin{aligned}
x^{2}+x y+y^{2} & =8 \\
\frac{d}{d x}\left[x^{2}+x y+y^{2}\right] & =\frac{d}{d x} 8 \\
2 x+\left(y+x y^{\prime}\right)+2 y y^{\prime} & =0 \\
x y^{\prime}+2 y y^{\prime} & =-2 x-y \\
y^{\prime}(x+2 y) & =-(2 x+y) \\
\frac{d y}{d x} & =-\frac{y+2 x}{x+2 y}
\end{aligned}
$$

Quiz 13: Compute the following limit: $\lim _{x \rightarrow 0} \frac{3-\sqrt{x+9}}{x}$.

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{3-\sqrt{x+9}}{x} & =\lim _{x \rightarrow 0} \frac{3-\sqrt{x+9}}{x} \cdot \frac{3+\sqrt{x+9}}{3+\sqrt{x+9}} \\
& =\lim _{x \rightarrow 0} \frac{9-(x+9)}{x(3+\sqrt{x+9})} \\
& =\lim _{x \rightarrow 0} \frac{-x}{x(3+\sqrt{x+9})} \\
& =\lim _{x \rightarrow 0} \frac{-1}{3+\sqrt{x+9}} \\
& =-\frac{1}{3+\sqrt{0+9}}=-\frac{1}{6}
\end{aligned}
$$

Quiz 14: Find $\frac{d^{2} y}{d x^{2}}$, where $y^{2}-x^{2} y=5$.
Solution: We have

$$
\begin{aligned}
y^{2}-x^{2} y & =5 \\
\frac{d}{d x}\left[y^{2}-x^{2} y\right] & =\frac{d}{d x} 5 \\
2 y y^{\prime}-\left(2 x y+x^{2} y^{\prime}\right) & =0 \\
2 y y^{\prime}-2 x y-x^{2} y^{\prime} & =0 \\
y^{\prime}\left(2 y-x^{2}\right) & =2 x y \\
\frac{d y}{d x} & =\frac{2 x y}{2 y-x^{2}}
\end{aligned}
$$

Then we must have

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =\frac{d}{d x} \frac{d y}{d x} \\
& =\frac{d}{d x}\left[\frac{2 x y}{2 y-x^{2}}\right] \\
& =\frac{\left(2 y-x^{2}\right)\left(2 y+2 x y^{\prime}\right)-\left(2 y^{\prime}-2 x\right)(2 x y)}{\left(2 y-x^{2}\right)^{2}} \\
& =\frac{\left(2 y-x^{2}\right)\left(2 y+2 x \cdot \frac{2 x y}{2 y-x^{2}}\right)-\left(2 \cdot \frac{2 x y}{2 y-x^{2}}-2 x\right)(2 x y)}{\left(2 y-x^{2}\right)^{2}}
\end{aligned}
$$

Quiz 15: Calculate the following limit: $\lim _{x \rightarrow 5} \frac{\frac{1}{5}-\frac{1}{x}}{5-x}$.

Solution:

$$
\lim _{x \rightarrow 5} \frac{\frac{1}{5}-\frac{1}{x}}{5-x}=\lim _{x \rightarrow 5} \frac{\frac{x-5}{5 x}}{5-x}=\lim _{x \rightarrow 5} \frac{x-5}{(5-x) 5 x}=\lim _{x \rightarrow 5} \frac{-1}{5 x}=-\frac{1}{25}
$$

Quiz 16: Compute the following limit: $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)$.
Solution: Since $-1 \leq \sin \theta \leq 1$ for all θ, we know that $-1 \leq \sin \left(\frac{1}{x}\right) \leq 1$ for all x. But multiplying by x^{2}, we then have

$$
-x^{2} \leq x^{2} \sin \left(\frac{1}{x}\right) \leq x^{2}
$$

But as we have $\lim _{x \rightarrow 0}\left(-x^{2}\right)=\lim _{x \rightarrow 0} x^{2}=0$. Therefore by Squeeze Theorem, we must have

$$
\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)=0
$$

Quiz 17: Compute the following derivatives:
(i) $\frac{d}{d x} \sin ^{2}(3 x) \sec (2 x)=2 \sin (3 x) \cos (3 x) 3 \cdot \sec x+\sec ^{2}(3 x) \cdot \sec (2 x) \tan (2 x) 2$
(ii) $\frac{d}{d x} \tan ^{-1}(5 x)=\frac{1}{1+(5 x)^{2}} \cdot 5$
(iii) $\frac{d}{d x} \frac{(1-4 x)^{3}}{1+e^{x}}=\frac{\left(1+e^{x}\right) \cdot 3(1-4 x)^{2} 4-e^{x} \cdot(1-4 x)^{3}}{\left(1+e^{x}\right)^{2}}$
(iv) $\frac{d}{d x} 5^{x} \log _{4}(1-x)=5^{x} \ln 5 \cdot \log _{4}(1-x)+5^{x} \cdot \frac{1}{(1-x) \ln 4} \cdot(-1)$

Quiz 18: Find $\frac{d y}{d x}$ for the curve $x+x^{2} y^{3}=\sin (x y)$.

Solution:

$$
\begin{aligned}
x+x^{2} y^{3} & =\sin (x y) \\
\frac{d}{d x}\left[x+x^{2} y^{3}\right] & =\frac{d}{d x} \sin (x y) \\
1+\left(2 x \cdot y^{3}+x^{2} \cdot 3 y^{2} y^{\prime}\right) & =\cos (x y) \cdot\left(1 \cdot y+x \cdot y^{\prime}\right) \\
1+2 x y^{3}+3 x^{2} y^{2} y^{\prime} & =y \cos (x y)+x \cos (x y) y^{\prime} \\
3 x^{2} y^{2} y^{\prime}-x \cos (x y) y^{\prime} & =y \cos (x y)-2 x y^{3}-1 \\
\left(3 x^{2} y^{2}-x \cos (x y)\right) y^{\prime} & =y \cos (x y)-2 x y^{3}-1 \\
\frac{d y}{d x} & =\frac{y \cos (x y)-2 x y^{3}-1}{3 x^{2} y^{2}-x \cos (x y)}
\end{aligned}
$$

\qquad

Quiz 19: An spider moves along the x-axis from left to right at 5 inches per second. A fly moves along the y-axis from up to down at 3 inches per second. At a certain instant, the spider is 4 inches to the right of the origin and the fly is 8 inches above the origin. At this instant, what is the rate of change of the distance between the spider and the fly? [Oh my!]

Solution:

