Problem 1: Evaluate the following:
(a) $\int x^{2}\left(x+1-\frac{1}{x^{2}}+\frac{2}{x^{3}}\right) d x$
(k) $\int \sin \theta \sec ^{2} \theta d \theta$
(b) $\int \frac{d x}{4+x^{2}}$
(l) $\int \sec ^{6} \theta \tan ^{4} \theta d \theta$
(c) $\int \sqrt[3]{(x+1)^{5}} d x$
(m) $\int \arctan (1 / x) d x$
(d) $\int \frac{x+5}{x-6} d x$
(n) $\int 2 x^{2} \sin (3 x) d x$
(e) $\int \sin ^{5} \theta \cos ^{2} \theta d \theta$
(o) $\int \sin (2 x) \cos (3 x) d x$
(f) $\int x^{5} \ln x d x$
(p) $\int \frac{\sin \sqrt{x}}{\sqrt{x}} d x$
(g) $\int\left(x^{3}-x+1\right) e^{2 x} d x$
(q) $\int x \cos \left(1-x^{2}\right) d x$
(h) $\int e^{x} \sin (3 x) d x$
(r) $\int \sin ^{4} \theta d \theta$
(i) $\int \frac{x-1-\sqrt{x}+\sqrt[3]{x}}{\sqrt{x}} d x$
(s) $\int \frac{\ln x}{x^{2}} d x$
(j) $\int \frac{d x}{9 x^{2}+4}$
(t) $\int \frac{\sin x}{1+\sin x} d x$

Problem 2: Evaluate the following:
(a) $\int \frac{x-\sqrt{x}}{\sqrt{x}} d x$
(e) $\int x^{3} \sqrt[3]{2 x^{4}+5} d x$
(b) $\int \csc \theta d \theta$
(f) $\int \sec \theta \tan ^{3} \theta d \theta$
(c) $\int \frac{d x}{5 x^{2}+9}$
(g) $\int \sin ^{5} \theta \cos ^{5} \theta d \theta$
(d) $\int \frac{d x}{1-2 x}$
(h) $\int \frac{x+1}{\sqrt{x-5}} d x$
(i) $\int \frac{e^{x}}{e^{x}+1} d x$
(n) $\int \sin (2 x) \tan x d x$
(j) $\int e^{x / 3} \sin (2 x) d x$
(o) $\int_{1}^{9} \frac{\ln x}{\sqrt{x}} d x$
(k) $\int \frac{x^{2}-1}{x+1} d x$
(1) $\int \sqrt{7 x-9} d x$
(p) $\int \csc ^{4} \theta \cot ^{6} d \theta$
(m) $\int \frac{\sin (\ln x)}{x} d x$
(q) $\int_{0}^{1} \sin ^{-1} \theta d \theta$

Problem 3: Evaluate the following:
(a) $\int \sec \theta d \theta$
(j) $\int\left(x^{2} e^{x}+x e^{x}\right) d x$
(b) $\int e^{\sin \theta} \cos \theta d \theta$
(k) $\int \frac{d x}{6+5 x^{2}}$
(c) $\int(2 x+1)^{10} d x$
(l) $\int(4 x+1)\left(2 x^{2}+x\right)^{8} d x$
(d) $\int \frac{x^{2}+1}{x-1} d x$
(m) $\int \frac{x^{3}}{\left(x^{2}+5\right)^{2}} d x$
(e) $\int x^{2} \sqrt{x-1} d x$
(n) $\int x^{3} e^{x} d x$
(f) $\int \csc ^{3} \theta \cot ^{3} \theta d \theta$
(o) $\int \frac{x^{3} e^{x^{2}}}{\left(x^{2}+1\right)} d x$
(g) $\int_{\pi / 4}^{\pi / 2} \cot ^{3} \theta d \theta$
(p) $\int \arctan \theta d \theta$
(h) $\int x^{2} 2^{x} d x$
(q) $\int e^{2 x} \sin (2 x) d x$
(i) $\int \frac{\ln x}{x} d x$
(r) $\int \sin (3 x) \cos (x) d x$
(s) $\int \frac{\tan ^{2} \theta}{\sec ^{5} \theta} d \theta$
(t) $\int \tan ^{6} \theta d \theta$

Problem 4: Evaluate the following:
(a) $\int_{1}^{e^{5}} \frac{(\ln x)^{6}+3}{x} d x$
(i) $\int_{1}^{16} \frac{d x}{\sqrt{x}(1+\sqrt{x})^{2}}$
(b) $\int(\ln x)^{2} d x$
(j) $\int e^{2 x} \cos x d x$
(c) $\int \frac{x-1}{x+1} d x$
(k) $\int \sin ^{2}(5 \theta) d \theta$
(d) $\int\left(2 x^{2}+4\right) \cos \left(\frac{x}{2}\right) d x$
(1) $\int e^{\pi x} \sin \left(\pi^{2} x\right) d x$
(e) $\int_{0}^{3} \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} d x$
(m) $\int \theta \tan ^{-1} \theta d \theta$
(n) $\int \cos \theta \ln (\sin \theta) d \theta$
(f) $\int \frac{2 x-1}{3 x-5} d x$
(o) $\int \frac{\tan ^{3} \theta}{\sqrt{\sec \theta}} d \theta$
(g) $\int 4 x^{3} \cos (3 x) d x$
(p) $\int \frac{\cos \theta \sec \theta}{\csc \theta} d \theta$
(h) $\int x^{7} \sqrt{2 x^{4}+1} d x$
(q) $\int 5 x^{2} e^{x / 5} d x$

Problem 5: Find the area between the given curves:
(a) $f(x)=x^{2}, g(x)=0, x=-2, x=2$
(b) $y=\sin x, y=\frac{4 x}{\pi \sqrt{2}}$ in Quadrant 1 .
(c) $f(x)=x^{2}-1, g(x)=1-x^{2}$
(d) $f(x)=x^{2}, y=4, x=0$
(e) $y=1-(x-1)^{2}, x=\frac{1}{2}, y=0$
(f) $f(x)=\sqrt[5]{x}, x=0, y=32$
(g) $y=x-1, y^{2}=2 x+6$
(h) $x=y^{2}-4, x=y+2$
(i) $x=y^{3}-10 y+3, x=3-3 y^{2}$

Problem 6: Find the average value of $f(x)=x^{2}+2 x-1$ on [0,4].
Problem 7: Consider the each of the following lines:
(i) x-axis
(ii) y-axis
(iii) $x=7$
(iv) $x=-6$
(v) $y=10$
(vi) $y=-5$

For each of the following, set-up but do not integrate an integral expression using both the Disk/Washer and Shells method to calculate to the volume resulting from revolving the region bound by the given curves around each of the lines above (do not set-up the integrals in the case where the given line passes through the region):
(a) $f(x)=\sqrt{x}, g(x)=0, x=1$
(b) $f(x)=x^{2}, g(x)=x$
(c) $y=2 x, y=3 x-1$
(d) $y=|x|, y=2$
(e) $y=\sin x, y=0$
(f) $f(x)=1-x^{2}, g(x)=x^{2}-1$
(g) $y=2 x-4, x=6, y=0$
(h) $f(x)=\sqrt{x-1}, y=(x-1)^{2}$
(i) $y=2 x-1, y=3 x-1, x=2$
(j) $x=4-y^{2}, x=y^{2}-4$

Problem 8: Find the volume in each problem by using known cross-sections.
(i) The base of a solid is the region formed by $f(x)=x(x-1)$ and $y=0$. The cross sections perpendicular to the x-axis are squares. Find the volume of the solid.
(ii) The base of a solid has boundary given by the curves $y=x^{3}$ and $y=x$. The cross sections perpendicular to the x-axis are semicircles. Find the volume of the solid.
(iii) The base of a solid has boundary given by the curves $f(x)=x^{2}-1$ and $g(x)=1-x^{2}$. The cross sections perpendicular to the x-axis are equilateral triangles. Find the volume of the solid. What would the integral be if the cross sections were semicircles?
(iv) Find the volume of a solid pyramid with square base that is 5 units tall and 20 units on the side.
(v) A regular cone has a base that is 4 units across and 5 units tall. Find the volume of the cone.
(vi) The base of a solid has boundary given by $y=4-x^{2} / 9$ and $y=0$. Cross sections perpendicular to the x-axis are $30^{\circ}-60^{\circ}-90^{\circ}$ triangles with one leg in the plane. What is the volume of the solid? What if the hypotenuse were in the plane?
(vii) The base of a solid has boundary given by $y=\sqrt{4-x^{2}}$ and $y=0$. Cross sections parallel to the x-axis are rectangles with length in the plane and height twice the length. Find the volume of the solid.
(viii) The base of a solid has boundary given by the ellipse $4 x^{2}+9 y^{2}=9$. Cross sections perpendicular to the x-axis are isosceles right triangles with the hypotenuse lying in the plane. Find the volume of the solid.
(ix) The base of a solid has boundary given by $x^{2}+y^{2}=4$. The cross sections perpendicular to the x-axis are equilateral triangles. Find the volume of the solid.
(x) The base of a solid is given by the curve $y=\sin x$ from 0 to π and the curve $y=0$. Cross sections perpendicular to the x-axis are semicircles. Find the volume of the solid.
(xi) The base of a solid is given by the curves $y=\sqrt{x}$ and $y=x^{2}$. Slices perpendicular to the y-axis are rectangles with height a third the length of the side lying in the plane. Find the volume of the solid.

Recall:
(a) $A_{\text {square }}=s^{2}$
(d) $A_{\text {eq.-triangle }}=\frac{\sqrt{3}}{4} s^{2}$
(b) $A_{\text {circle }}=\pi r^{2}$
(c) $A_{\text {triangle }}=\frac{1}{2} b h$
(e) A $30^{\circ}-60^{\circ}-90^{\circ}$ have sides in ratio $1: \sqrt{3}: 2$
(f) $\mathrm{A} 45^{\circ}-45^{\circ}-90^{\circ}$ have sides in ratio 1:1: $\sqrt{2}$

