MAT 296: Calculus II

Exam I Review

Spring 2018

Problem 1: Evaluate the following:
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Problem 2: Evaluate the following:
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Problem 3: Evaluate the following:
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Problem 4: Evaluate the following:
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Problem 5: Find the area between the given curves:

@ fx)=x%g(x)=0,x=-2,x=2

4
(b) y =sinx, y = X in Quadrant 1.

/2

© flx)=x2—1, g(x)=1—x?

A f(x)=x*y=4x=0
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@ y=1-(x—1%x=3y=0
® f(x)=vVx,x=0,y=32

(g y=x—1,y>=2x+6

(h) x=y>—4,x=y+2

() x=y3—10y +3,x =3—-3y2

Problem 6: Find the average value of f(x) = x%+ 2x —1 on [0, 4].

Problem 7: Consider the each of the following lines:

(i) x-axis
(i) y-axis
(i) x =7
(iv) x=-6
v) y=10
Vi) y=-5

For each of the following, set-up but do not integrate an integral expression using both the Disk/Washer
and Shells method to calculate to the volume resulting from revolving the region bound by the given
curves around each of the lines above (do not set-up the integrals in the case where the given line passes
through the region):

@ flx)=vx,gx)=0,x=1
(b) f(x)=x? glx)=x

(@ y=2x,y=3x—-1

D y=Ixl,y=2

(e) y=sinx,y=0

0 flx)=1-x%gx)=x>—1
(8 y=2x—4,x=6,y=0

() f()=+vx—1,y=(x—1)
 y=2x—-1,y=3x—1,x=2
@ x=4-y%x=y*"—4
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Problem 8: Find the volume in each problem by using known cross-sections.

(i) The base of a solid is the region formed by f(x) = x(x —1) and y = 0. The cross sections perpen-
dicular to the x-axis are squares. Find the volume of the solid.

(i) The base of a solid has boundary given by the curves y = x® and y = x. The cross sections per-
pendicular to the x-axis are semicircles. Find the volume of the solid.

(iii) The base of a solid has boundary given by the curves f(x) = x?> —1 and g(x) = 1— x2. The cross
sections perpendicular to the x-axis are equilateral triangles. Find the volume of the solid. What
would the integral be if the cross sections were semicircles?

(iv) Find the volume of a solid pyramid with square base that is 5 units tall and 20 units on the side.
(v) A regular cone has a base that is 4 units across and 5 units tall. Find the volume of the cone.

(vi) The base of a solid has boundary given by y = 4—x2/9 and y = 0. Cross sections perpendicular
to the x-axis are 30° — 60° — 90° triangles with one leg in the plane. What is the volume of the
solid? What if the hypotenuse were in the plane?

(vii) The base of a solid has boundary given by y = v4 —x2 and y = 0. Cross sections parallel to the
x-axis are rectangles with length in the plane and height twice the length. Find the volume of the
solid.

(viii) The base of a solid has boundary given by the ellipse 4x2 +9y? = 9. Cross sections perpendicular
to the x-axis are isosceles right triangles with the hypotenuse lying in the plane. Find the volume
of the solid.

(ix) The base of a solid has boundary given by x? + y? = 4. The cross sections perpendicular to the
x-axis are equilateral triangles. Find the volume of the solid.

(x) The base of a solid is given by the curve y = sinx from 0 to 7 and the curve y = 0. Cross sections
perpendicular to the x-axis are semicircles. Find the volume of the solid.

(xi) The base of a solid is given by the curves y = /x and y = x2. Slices perpendicular to the y-axis are
rectangles with height a third the length of the side lying in the plane. Find the volume of the solid.
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Recall:

(a) Asquare =s? (d) Aeq.-triangle = ‘/552

=
(b) Acircle = m,z

(C) Atriangle = %b h

(e) A 30°—60°—90° have sides in ratio 1: v/3: 2
() A 45°—45°—90° have sides in ratio 1: 1: v/2

60f 6



