Name: Caleb McWhorter — Solutions
Spring 2018

Problem 1: What is the least common multiple of the following polynomials: $\{x-2, (x-2)(x-3)\}$?

Solution. The least common multiple is (x-2)(x-3).

Problem 2: What is the least common multiple of the following polynomials: $\{x^2+x-6, x^2-7x+10\}$? **Solution.** Because $\{x^2+x-6, x^2-7x+10\} = \{(x+3)(x-2), (x-2)(x-5)\}$, the least common multiple is (x+3)(x-2)(x+5).

Problem 3: Solve the following system of equations:

$$a+b=5$$

$$a - b = 7$$

Solution. Adding the equations gives 2a = 12 so that a = 6. But then 5 = a + b = 6 + b so that b = -1.

Problem 4: Solve the following system of equations using elimination:

$$2x - y + z = 8$$

$$x - 2y + z = 7$$

$$-x + y - z = -6$$

Solution. Rewrite the first two equations, multiplying the second one by 2 gives

$$2x - y + z = 8$$

$$2x - 4y + 2z = 14$$

Subtracting them gives 3y - z = -6. Now rewrite the second equation and the third equation.

$$x - 2y + z = 7$$

$$-x + y - z = -6$$

Adding them gives -y = 1 so that y = -1. But we know 3y - z = -6, so z = 3y + 6. Since y = -1, we have z = -3 + 6 = 3. Finally, we know x - 2y + z = 7, and using y = -1 and z = 3, we have x + 2 + 3 = 7 so that x = 2.

MAT 296: HW 4

Due: 02/16

Problem 5: Integrate the following:

$$\int \frac{3\ln x}{x^4} \, dx$$

Solution.

$$\int \frac{3\ln x}{x^4} \, dx = -\frac{\ln x}{x^3} - \int \frac{3}{3x^4} \, dx = -\frac{\ln x}{x^3} - \frac{1}{3x^3} + C$$

Problem 6: Integrate the following:

$$\int \sin^3\theta \ d\theta$$

Solution.

$$\int \sin^3 \theta \ d\theta = \int \sin^2 \theta \cdot \sin \theta \ d\theta = \int (1 - \cos^2 \theta) \cdot \sin \theta \ d\theta$$

Let $u = \cos \theta$. Then $du = -\sin \theta \ d\theta$.

$$\int \sin^3 \theta \ d\theta = -\int (1 - u^2) \, du = \int (u^2 - 1) \, du = \frac{u^3}{3} - u + C = \frac{\cos^3 \theta}{3} - \cos \theta + C$$

Problem 7: Find the volume resulting from rotating the region bound by $y = \sin x$, y = 0, and $x = \frac{\pi}{2}$ about the *y*-axis.

Solution. The region is plotted below:

Using Shells, we have

$$V = \int_{0}^{\pi/2} x \sin x \, dx$$

$$x - \cos x$$

$$1 \sin x$$

$$V = 2\pi \int_0^{\pi/2} x \sin x \, dx$$

$$= -2\pi x \cos x \Big|_0^{\pi/2} - 2\pi \int_0^{\pi/2} -\cos x \, dx$$

$$= 2\pi \left(-x \cos x + \sin x\right) \Big|_0^{\pi/2}$$

$$= 2\pi \left[\left(-\frac{\pi}{2} \cos\left(\frac{\pi}{2}\right) + \sin\left(\frac{\pi}{2}\right)\right) - (0+0)\right]$$

$$= 2\pi$$

Using Disks/Washes, we have (since $y = \sin x \iff x = \sin^{-1}(y)$)

$$V = \pi \int_0^1 \left(\frac{\pi}{2}\right)^2 - \left(\sin^{-1} y\right)^2 dy$$

Now

$$\int_0^1 \left(\frac{\pi}{2}\right)^2 dy = \int_0^1 \frac{\pi^2}{4} dy = \frac{\pi^2}{4}$$

We only have to find

$$\int (\sin^{-1}(y))^2 dy = \int \arcsin^2 y dy$$

$$\int \arcsin y \ dy = y \arcsin^2 y - \int \frac{2y \arcsin y}{\sqrt{1 - y^2}} \ dy$$

$$\int \arcsin y \, dy = y \arcsin^2 y - \int \frac{2y \arcsin y}{\sqrt{1 - y^2}} \, dy$$
$$= y \arcsin^2 y + 2 \arcsin y \sqrt{1 - y^2} - \int 2 \, dy$$
$$= y \arcsin^2 y + 2 \arcsin y \sqrt{1 - y^2} - 2y + C$$

Therefore, we have

$$\int_{0}^{1} \arcsin^{2} y \, dy = \left(y \arcsin^{2} y + 2 \arcsin y \sqrt{1 - y^{2}} - 2y \right) \Big|_{0}^{1}$$

$$= \left(\arcsin^{2}(1) + 2 \arcsin(1) \cdot 0 - 2 \right) - (0 + 0 - 0)$$

$$= \frac{\pi^{2}}{4} - 2$$

Then finally, we have

$$V = \pi \int_0^1 \left(\frac{\pi}{2}\right)^2 - \left(\sin^{-1} y\right)^2 dy$$

$$= \pi \left[\int_0^1 \left(\frac{\pi}{2}\right)^2 dy - \int_0^1 \left(\sin^{-1} y\right)^2 dy \right]$$

$$= \pi \left[\frac{\pi^2}{4} - \left(\frac{\pi^2}{4} - 2\right)\right]$$

$$= 2\pi$$