Name: Caleb McWhorter — Solutions MAT 296: HW 9
Spring 2018 Due: 03/30

Problem 1: Use the Comparison Test or Limit Comparison Test to decide whether the following series
converge or diverge. Be sure to justify your answer.
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diverges by the Comparison Test.
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The series Z diverges by the p-test. Therefore, Z diverges by the Limit Comparison Test.
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The series Z — converges by the p-test. Therefore, Z i converges by the Comparison Test.
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The series Z — converges by the p-test. Therefore, Z i converges by the Limit Comparison
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Test.
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The series Z converges by the p-test. Therefore, the series Z ———— converges by the Limit
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Note that —2n—1 = —(2n+1) and that 2n+1 < 2n? for n > 1. [To see this, note that let f (x) = 2x?
and g(x)=2x+1. Now f(2) =8 and g(2) =5 and f'(x) = 4x > 2 = g'(x) for x > 1.] The series
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The series Z diverges by the p-test. Therefore, Z diverges by the Comparison Test
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Test.
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The series Z — converges by the p-test. Therefore, Z ————— converges by the Comparison Test.
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The series 5= is geometric with r = % so that the series converges. There ore,
converges by the Comparison Test.
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The series 5= is geometric with r = % so that the series converges. There ore,
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converges by the Limit Comparison Test.
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The series Z — diverges by the p-test. Therefore, Z I:_ns
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diverges by the Comparison Test.
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The series Z e} converges by the p-test. Therefore, Z m converges by the Comparison Test.
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or of course one could have computed the limit as
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The series Z —; converges by the p-test. Therefore, Z m converges by the Limit Comparison
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Test.

40f 7



N 1)
(ix) ;sm (n

hrn
n—oo

lim
n—oo

).

:II—‘A

n(5) ()
— | sin| —
n n
1
n

1
The series Z — converges by the p-test. Therefore sm2 —) converges by the Limit Comparison
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Test.
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or if one wanted things to look a bit nicer, one could do. ..
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In either case, Z diverges by the p-test. Therefore, Z _ 5 diverges by the Comparison
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The series Z diverges by the p-test. Therefore, Z 5 diverges by the Limit Comparison
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Test.
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The series E — converges by the p-test. Therefore, the series E e
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The series — converges by the p-test. Therefore, ————— converges by the Comparison Test.
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The series » — converges by the p-test. Therefore, ———— converges by the Limit Comparison
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Test.
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