Problem 1: Scores from a recent major college entry exam were approximately normal with mean 78 and standard deviation 5.
(a) What proportion of students scored below a 65?

$$
z_{65}=\frac{65-78}{5}=-2.6 \rightsquigarrow 0.0047
$$

(b) What proportion of students scored above a 85 ?

$$
\begin{gathered}
z_{85}=\frac{85-78}{5}=0.88 \rightsquigarrow 0.8106 \\
1-0.8106=0.1894
\end{gathered}
$$

(c) What proportion of students scored between 65 and 85 ?

$$
0.8106-0.0047=0.8059
$$

(d) What score would a student need to receive in order to score in the top 7% ?

$$
\begin{aligned}
7 \% & \rightsquigarrow 93 \% \rightsquigarrow z_{0.93} \rightsquigarrow 1.48 \\
1.48 & =\frac{x-78}{5} \\
x & =78+5(1.48)=85.40
\end{aligned}
$$

Problem 2: An Olympic archer named Kantmiss Evergreen is able to hit the bull's eye 90\% of the time. Assume each shot is independent of the others.
(a) If she shoots 5 arrows, what is the probability that she misses the bull's eye exactly one?

$$
{ }_{5} C_{1}(0.10)^{1}(0.90)^{4} \approx 0.3281=32.81 \%
$$

(b) If she shoots 5 arrows, what is the probability that the misses at most once?

$$
P(X=0)+P(X=1)=0.5905+0.3281=0.9186=91.86 \%
$$

(c) Suppose she will be shooting 200 arrows in a large competition. Let X be the number of bull's eyes she gets. What is the approximate distribution of the number of bull's eyes X ? What are the mean and standard deviation of X ?

The distribution is approximately normal:

$$
\begin{aligned}
& \mu=n p=200(0.90)=180 \\
& \sigma=\sqrt{n p q}=\sqrt{200(0.90)(0.10)}=4.24
\end{aligned}
$$

(d) Suppose she made only 171 bully's eyes in 200 arrows. Use the normal approximation to estimate the probability that she makes 171 or less bull's eyes in 200 shots.

$$
z_{171.5}=\frac{171-180}{4.24}=-2.12 \rightsquigarrow 0.0170=1.7 \%
$$

(e) Recalculate (d) using the continuity correction to improve the estimate.

$$
z_{171.5}=\frac{171.5-180}{4.24}=-2.00 \rightsquigarrow 0.0228=2.28 \%
$$

